Spaces:
Build error
Build error
Upload 6 files
Browse files- app.py +21 -13
- main.py +85 -118
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,29 +1,37 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import main
|
|
|
4 |
|
5 |
|
6 |
def predict_from_pdf(pdf_file):
|
|
|
7 |
upload_dir = "./catalogue/"
|
8 |
os.makedirs(upload_dir, exist_ok=True)
|
9 |
|
|
|
|
|
|
|
10 |
try:
|
11 |
-
# Save the uploaded file
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
return df, response
|
|
|
20 |
except Exception as e:
|
21 |
-
return None, f"Error: {str(e)}"
|
22 |
|
23 |
|
|
|
24 |
pdf_examples = [
|
25 |
-
["
|
26 |
-
["
|
27 |
]
|
28 |
|
29 |
demo = gr.Interface(
|
@@ -32,8 +40,8 @@ demo = gr.Interface(
|
|
32 |
outputs=["json", "text"],
|
33 |
examples=pdf_examples,
|
34 |
title="Open Source PDF Catalog Parser",
|
35 |
-
description="Efficient PDF catalog processing using
|
36 |
-
article="Uses MinerU for layout analysis and
|
37 |
)
|
38 |
|
39 |
if __name__ == "__main__":
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import main
|
4 |
+
import shutil
|
5 |
|
6 |
|
7 |
def predict_from_pdf(pdf_file):
|
8 |
+
# Create a temporary directory for file uploads
|
9 |
upload_dir = "./catalogue/"
|
10 |
os.makedirs(upload_dir, exist_ok=True)
|
11 |
|
12 |
+
# Use the provided file path from Gradio's file object
|
13 |
+
dest_file_path = os.path.join(upload_dir, os.path.basename(pdf_file.name))
|
14 |
+
|
15 |
try:
|
16 |
+
# Save the uploaded file using shutil.copy
|
17 |
+
shutil.copy(pdf_file, dest_file_path)
|
18 |
+
|
19 |
+
# Check if the file was saved successfully
|
20 |
+
if not os.path.exists(dest_file_path):
|
21 |
+
return None, f"Error: The file {dest_file_path} could not be found or opened."
|
22 |
+
|
23 |
+
# Process the PDF and retrieve the product info
|
24 |
+
df, response = main.process_pdf_catalog(dest_file_path)
|
25 |
return df, response
|
26 |
+
|
27 |
except Exception as e:
|
28 |
+
return None, f"Error processing PDF: {str(e)}"
|
29 |
|
30 |
|
31 |
+
# Define example PDFs
|
32 |
pdf_examples = [
|
33 |
+
["catalogue/flexpocket.pdf"],
|
34 |
+
["catalogue/ASICS_Catalog.pdf"],
|
35 |
]
|
36 |
|
37 |
demo = gr.Interface(
|
|
|
40 |
outputs=["json", "text"],
|
41 |
examples=pdf_examples,
|
42 |
title="Open Source PDF Catalog Parser",
|
43 |
+
description="Efficient PDF catalog processing using fitz and OpenLLM",
|
44 |
+
article="Uses MinerU for layout analysis and Llama-CPP for structured extraction"
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
main.py
CHANGED
@@ -5,24 +5,15 @@ import logging
|
|
5 |
from pathlib import Path
|
6 |
from typing import List, Dict, Optional
|
7 |
from dataclasses import dataclass
|
|
|
|
|
|
|
8 |
from fastapi.encoders import jsonable_encoder
|
9 |
-
# from sentence_transformers import SentenceTransformer
|
10 |
-
# from llama_cpp import Llama
|
11 |
-
|
12 |
-
# Fix: Dynamically adjust the module path if magic_pdf is in a non-standard location
|
13 |
-
try:
|
14 |
-
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
|
15 |
-
from magic_pdf.data.dataset import PymuDocDataset
|
16 |
-
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
17 |
-
from magic_pdf.config.enums import SupportedPdfParseMethod
|
18 |
-
except ModuleNotFoundError as e:
|
19 |
-
logging.error(f"Failed to import magic_pdf modules: {e}")
|
20 |
-
logging.info("Ensure that the magic_pdf package is installed and accessible in your Python environment.")
|
21 |
-
raise e
|
22 |
|
23 |
logging.basicConfig(level=logging.INFO)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
|
|
26 |
@dataclass
|
27 |
class ProductSpec:
|
28 |
name: str
|
@@ -34,127 +25,101 @@ class ProductSpec:
|
|
34 |
def to_dict(self):
|
35 |
return jsonable_encoder(self)
|
36 |
|
|
|
37 |
class PDFProcessor:
|
38 |
def __init__(self):
|
39 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
40 |
-
self.llm = self._initialize_llm("
|
|
|
41 |
self.output_dir = Path("./output")
|
42 |
self.output_dir.mkdir(exist_ok=True)
|
43 |
|
44 |
def _initialize_emb_model(self, model_name):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
return model
|
56 |
|
57 |
def _initialize_llm(self, model_name):
|
58 |
"""Initialize LLM with automatic download if needed"""
|
59 |
-
""
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
n_ctx=2048,
|
74 |
-
n_threads=os.cpu_count() - 1,
|
75 |
-
n_gpu_layers=35 if os.getenv('USE_GPU') else 0,
|
76 |
-
verbose=False
|
77 |
-
)
|
78 |
-
"""
|
79 |
-
# Load model directly
|
80 |
-
from transformers import AutoModel
|
81 |
-
model = AutoModel.from_pretrained("TheBloke/deepseek-llm-7B-base-GGUF")
|
82 |
-
return model
|
83 |
-
|
84 |
def process_pdf(self, pdf_path: str) -> Dict:
|
85 |
-
"""Process PDF using
|
86 |
start_time = time.time()
|
87 |
-
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
try:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
infer_result = ds.apply(doc_analyze, ocr=True)
|
108 |
-
pipe_result = infer_result.pipe_ocr_mode(image_writer)
|
109 |
-
else:
|
110 |
-
infer_result = ds.apply(doc_analyze, ocr=False)
|
111 |
-
pipe_result = infer_result.pipe_txt_mode(image_writer)
|
112 |
-
|
113 |
-
# Get structured content
|
114 |
-
middle_json = pipe_result.get_middle_json()
|
115 |
-
tables = self._extract_tables(middle_json)
|
116 |
-
text_blocks = self._extract_text_blocks(middle_json)
|
117 |
-
|
118 |
-
# Process text blocks with LLM
|
119 |
-
products = []
|
120 |
-
for block in text_blocks:
|
121 |
-
product = self._process_text_block(block)
|
122 |
-
if product:
|
123 |
-
product.tables = tables
|
124 |
-
products.append(product.to_dict())
|
125 |
-
|
126 |
-
logger.info(f"Processed {len(products)} products in {time.time()-start_time:.2f}s")
|
127 |
-
return {"products": products, "tables": tables}
|
128 |
except Exception as e:
|
129 |
-
logger.
|
130 |
-
raise RuntimeError("PDF processing failed.") from e
|
131 |
-
|
132 |
-
def _extract_tables(self, middle_json: Dict) -> List[Dict]:
|
133 |
-
"""Extract tables from MinerU's middle JSON"""
|
134 |
-
tables = []
|
135 |
-
for page in middle_json.get('pages', []):
|
136 |
-
for table in page.get('tables', []):
|
137 |
-
tables.append({
|
138 |
-
"page": page.get('page_number'),
|
139 |
-
"cells": table.get('cells', []),
|
140 |
-
"header": table.get('header', []),
|
141 |
-
"content": table.get('content', [])
|
142 |
-
})
|
143 |
return tables
|
144 |
-
|
145 |
-
def _extract_text_blocks(self, middle_json: Dict) -> List[str]:
|
146 |
-
"""Extract text blocks from MinerU's middle JSON"""
|
147 |
-
text_blocks = []
|
148 |
-
for page in middle_json.get('pages', []):
|
149 |
-
for block in page.get('blocks', []):
|
150 |
-
if block.get('type') == 'text':
|
151 |
-
text_blocks.append(block.get('text', ''))
|
152 |
-
return text_blocks
|
153 |
-
|
154 |
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
155 |
"""Process text block with LLM"""
|
156 |
prompt = self._generate_query_prompt(text)
|
157 |
-
|
158 |
try:
|
159 |
response = self.llm.create_chat_completion(
|
160 |
messages=[{"role": "user", "content": prompt}],
|
@@ -165,11 +130,12 @@ class PDFProcessor:
|
|
165 |
except Exception as e:
|
166 |
logger.warning(f"Error processing text block: {e}")
|
167 |
return None
|
168 |
-
|
169 |
def _generate_query_prompt(self, text: str) -> str:
|
170 |
"""Generate extraction prompt"""
|
171 |
return f"""Extract product specifications from this text:
|
172 |
{text}
|
|
|
173 |
Return JSON format:
|
174 |
{{
|
175 |
"name": "product name",
|
@@ -177,7 +143,7 @@ Return JSON format:
|
|
177 |
"price": numeric_price,
|
178 |
"attributes": {{ "key": "value" }}
|
179 |
}}"""
|
180 |
-
|
181 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
182 |
"""Parse LLM response"""
|
183 |
try:
|
@@ -194,6 +160,7 @@ Return JSON format:
|
|
194 |
logger.warning(f"Parse error: {e}")
|
195 |
return None
|
196 |
|
|
|
197 |
def process_pdf_catalog(pdf_path: str):
|
198 |
processor = PDFProcessor()
|
199 |
try:
|
|
|
5 |
from pathlib import Path
|
6 |
from typing import List, Dict, Optional
|
7 |
from dataclasses import dataclass
|
8 |
+
import fitz # PyMuPDF
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from llama_cpp import Llama
|
11 |
from fastapi.encoders import jsonable_encoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
|
17 |
@dataclass
|
18 |
class ProductSpec:
|
19 |
name: str
|
|
|
25 |
def to_dict(self):
|
26 |
return jsonable_encoder(self)
|
27 |
|
28 |
+
|
29 |
class PDFProcessor:
|
30 |
def __init__(self):
|
31 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
32 |
+
# self.llm = self._initialize_llm("llama-2-7b.Q2_K.gguf")
|
33 |
+
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf")
|
34 |
self.output_dir = Path("./output")
|
35 |
self.output_dir.mkdir(exist_ok=True)
|
36 |
|
37 |
def _initialize_emb_model(self, model_name):
|
38 |
+
try:
|
39 |
+
from sentence_transformers import SentenceTransformer
|
40 |
+
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
41 |
+
except:
|
42 |
+
# Load model directly
|
43 |
+
from transformers import AutoTokenizer, AutoModel
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name)
|
46 |
+
model = AutoModel.from_pretrained("sentence-transformers/" + model_name)
|
47 |
+
return model
|
|
|
48 |
|
49 |
def _initialize_llm(self, model_name):
|
50 |
"""Initialize LLM with automatic download if needed"""
|
51 |
+
# model_path = os.path.join("models/", model_name)
|
52 |
+
# if os.path.exists(model_path):
|
53 |
+
# return Llama(
|
54 |
+
# model_path=model_path,
|
55 |
+
# n_ctx=1024,
|
56 |
+
# n_gpu_layers=-1,
|
57 |
+
# n_threads=os.cpu_count() - 1,
|
58 |
+
# verbose=False
|
59 |
+
# )
|
60 |
+
return Llama.from_pretrained(
|
61 |
+
repo_id="TheBloke/deepseek-llm-7B-base-GGUF",
|
62 |
+
filename=model_name,
|
63 |
+
)
|
64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def process_pdf(self, pdf_path: str) -> Dict:
|
66 |
+
"""Process PDF using PyMuPDF"""
|
67 |
start_time = time.time()
|
68 |
+
|
69 |
+
# Open PDF
|
70 |
+
doc = fitz.open(pdf_path)
|
71 |
+
text_blocks = []
|
72 |
+
tables = []
|
73 |
+
|
74 |
+
# Extract text and tables
|
75 |
+
for page_num, page in enumerate(doc):
|
76 |
+
# Extract text blocks
|
77 |
+
text_blocks.extend(self._extract_text_blocks(page))
|
78 |
+
|
79 |
+
# Extract tables
|
80 |
+
tables.extend(self._extract_tables(page, page_num))
|
81 |
+
|
82 |
+
# Process text blocks with LLM
|
83 |
+
products = []
|
84 |
+
for block in text_blocks:
|
85 |
+
product = self._process_text_block(block)
|
86 |
+
if product:
|
87 |
+
product.tables = tables
|
88 |
+
products.append(product.to_dict())
|
89 |
+
|
90 |
+
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
|
91 |
+
return {"products": products, "tables": tables}
|
92 |
+
|
93 |
+
def _extract_text_blocks(self, page) -> List[str]:
|
94 |
+
"""Extract text blocks from a PDF page"""
|
95 |
+
blocks = []
|
96 |
+
for block in page.get_text("blocks"):
|
97 |
+
blocks.append(block[4]) # The text content is at index 4
|
98 |
+
return blocks
|
99 |
+
|
100 |
+
def _extract_tables(self, page, page_num: int) -> List[Dict]:
|
101 |
+
"""Extract tables from a PDF page"""
|
102 |
+
tables = []
|
103 |
try:
|
104 |
+
tab = page.find_tables()
|
105 |
+
if tab.tables:
|
106 |
+
for table_idx, table in enumerate(tab.tables):
|
107 |
+
table_data = table.extract()
|
108 |
+
if table_data:
|
109 |
+
tables.append({
|
110 |
+
"page": page_num + 1,
|
111 |
+
"cells": table_data,
|
112 |
+
"header": table.header.names if table.header else [],
|
113 |
+
"content": table_data
|
114 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
except Exception as e:
|
116 |
+
logger.warning(f"Error extracting tables from page {page_num}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return tables
|
118 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
120 |
"""Process text block with LLM"""
|
121 |
prompt = self._generate_query_prompt(text)
|
122 |
+
|
123 |
try:
|
124 |
response = self.llm.create_chat_completion(
|
125 |
messages=[{"role": "user", "content": prompt}],
|
|
|
130 |
except Exception as e:
|
131 |
logger.warning(f"Error processing text block: {e}")
|
132 |
return None
|
133 |
+
|
134 |
def _generate_query_prompt(self, text: str) -> str:
|
135 |
"""Generate extraction prompt"""
|
136 |
return f"""Extract product specifications from this text:
|
137 |
{text}
|
138 |
+
|
139 |
Return JSON format:
|
140 |
{{
|
141 |
"name": "product name",
|
|
|
143 |
"price": numeric_price,
|
144 |
"attributes": {{ "key": "value" }}
|
145 |
}}"""
|
146 |
+
|
147 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
148 |
"""Parse LLM response"""
|
149 |
try:
|
|
|
160 |
logger.warning(f"Parse error: {e}")
|
161 |
return None
|
162 |
|
163 |
+
|
164 |
def process_pdf_catalog(pdf_path: str):
|
165 |
processor = PDFProcessor()
|
166 |
try:
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
gradio
|
3 |
+
llama-cpp-python
|
4 |
+
PyMuPDF
|