Spaces:
Build error
Build error
Update main.py
Browse files
main.py
CHANGED
@@ -8,7 +8,7 @@ from dataclasses import dataclass
|
|
8 |
from fastapi.encoders import jsonable_encoder
|
9 |
import fitz # PyMuPDF
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
-
from
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
@@ -29,46 +29,38 @@ class ProductSpec:
|
|
29 |
class PDFProcessor:
|
30 |
def __init__(self):
|
31 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
32 |
-
|
33 |
-
# self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf")
|
34 |
-
self.llm = self._initialize_llm("llama-2-7b.Q2_K.gguf")
|
35 |
self.output_dir = Path("./output")
|
36 |
self.output_dir.mkdir(exist_ok=True)
|
37 |
|
38 |
def _initialize_emb_model(self, model_name):
|
39 |
try:
|
40 |
-
|
41 |
-
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
42 |
except Exception as e:
|
43 |
-
logger.warning(f"SentenceTransformer failed: {e}
|
44 |
from transformers import AutoTokenizer, AutoModel
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/"
|
46 |
-
model = AutoModel.from_pretrained("sentence-transformers/"
|
47 |
return model
|
48 |
|
49 |
-
def _initialize_llm(self
|
50 |
-
"""Initialize LLM with
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
n_threads=os.cpu_count() - 1,
|
59 |
-
verbose=False
|
60 |
-
)
|
61 |
-
else:
|
62 |
-
return Llama.from_pretrained(
|
63 |
-
repo_id="Tien203/llama.cpp",
|
64 |
-
filename="Llama-2-7b-hf-q4_0.gguf",
|
65 |
)
|
|
|
|
|
|
|
66 |
|
67 |
def process_pdf(self, pdf_path: str) -> Dict:
|
68 |
-
"""
|
69 |
start_time = time.time()
|
70 |
|
71 |
-
# Open PDF
|
72 |
try:
|
73 |
doc = fitz.open(pdf_path)
|
74 |
except Exception as e:
|
@@ -78,37 +70,63 @@ class PDFProcessor:
|
|
78 |
text_blocks = []
|
79 |
tables = []
|
80 |
|
81 |
-
# Extract text and tables from each page
|
82 |
for page_num, page in enumerate(doc):
|
83 |
-
# Extract text blocks from page and filter out very short blocks (noise)
|
84 |
blocks = self._extract_text_blocks(page)
|
85 |
-
|
86 |
-
logger.debug(f"Page {page_num + 1}: Extracted {len(blocks)} blocks, {len(filtered)} kept after filtering.")
|
87 |
-
text_blocks.extend(filtered)
|
88 |
-
|
89 |
-
# Extract tables (if any)
|
90 |
tables.extend(self._extract_tables(page, page_num))
|
91 |
|
92 |
-
# Process text blocks with LLM to extract product information
|
93 |
products = []
|
94 |
for idx, block in enumerate(text_blocks):
|
95 |
-
# Log the text block for debugging
|
96 |
-
logger.debug(f"Processing text block {idx}: {block[:100]}...")
|
97 |
product = self._process_text_block(block)
|
98 |
-
if product:
|
99 |
product.tables = tables
|
100 |
-
|
101 |
-
if product.name or product.description or product.price or (
|
102 |
-
product.attributes and len(product.attributes) > 0):
|
103 |
-
products.append(product.to_dict())
|
104 |
-
else:
|
105 |
-
logger.debug(f"LLM returned empty product for block {idx}.")
|
106 |
-
else:
|
107 |
-
logger.debug(f"No product extracted from block {idx}.")
|
108 |
|
109 |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
|
110 |
return {"products": products, "tables": tables}
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def _extract_text_blocks(self, page) -> List[str]:
|
113 |
"""Extract text blocks from a PDF page using PyMuPDF's blocks method."""
|
114 |
blocks = []
|
@@ -138,27 +156,6 @@ class PDFProcessor:
|
|
138 |
logger.warning(f"Error extracting tables from page {page_num + 1}: {e}")
|
139 |
return tables
|
140 |
|
141 |
-
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
142 |
-
"""Process a text block with LLM to extract product specifications."""
|
143 |
-
prompt = self._generate_query_prompt(text)
|
144 |
-
logger.debug(f"Generated prompt: {prompt[:200]}...")
|
145 |
-
try:
|
146 |
-
response = self.llm.create_chat_completion(
|
147 |
-
messages=[{"role": "user", "content": prompt}],
|
148 |
-
temperature=0.1,
|
149 |
-
max_tokens=512
|
150 |
-
)
|
151 |
-
# Debug: log raw response
|
152 |
-
logger.debug(f"LLM raw response: {response}")
|
153 |
-
return self._parse_response(response['choices'][0]['message']['content'])
|
154 |
-
except Exception as e:
|
155 |
-
logger.warning(f"Error processing text block: {e}")
|
156 |
-
return None
|
157 |
-
|
158 |
-
def _generate_query_prompt(self, text: str) -> str:
|
159 |
-
"""Generate a prompt instructing the LLM to extract product information."""
|
160 |
-
return f"""Extract product specifications from the following text. If no product is found, return an empty JSON object with keys.\n\nText:\n{text}\n\nReturn JSON format exactly as:\n{{\n \"name\": \"product name\",\n \"description\": \"product description\",\n \"price\": numeric_price,\n \"attributes\": {{ \"key\": \"value\" }}\n}}"""
|
161 |
-
|
162 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
163 |
"""Parse the LLM's response to extract a product specification."""
|
164 |
try:
|
@@ -193,7 +190,6 @@ def process_pdf_catalog(pdf_path: str):
|
|
193 |
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
-
# Example usage: change this if you call process_pdf_catalog elsewhere
|
197 |
pdf_path = "path/to/your/pdf_file.pdf"
|
198 |
result, message = process_pdf_catalog(pdf_path)
|
199 |
-
print(result, message)
|
|
|
8 |
from fastapi.encoders import jsonable_encoder
|
9 |
import fitz # PyMuPDF
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
+
from mlc_llm import MLCEngine
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
|
|
29 |
class PDFProcessor:
|
30 |
def __init__(self):
|
31 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
32 |
+
self.llm = self._initialize_llm()
|
|
|
|
|
33 |
self.output_dir = Path("./output")
|
34 |
self.output_dir.mkdir(exist_ok=True)
|
35 |
|
36 |
def _initialize_emb_model(self, model_name):
|
37 |
try:
|
38 |
+
return SentenceTransformer(f'sentence-transformers/{model_name}')
|
|
|
39 |
except Exception as e:
|
40 |
+
logger.warning(f"SentenceTransformer failed: {e}")
|
41 |
from transformers import AutoTokenizer, AutoModel
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(f"sentence-transformers/{model_name}")
|
43 |
+
model = AutoModel.from_pretrained(f"sentence-transformers/{model_name}")
|
44 |
return model
|
45 |
|
46 |
+
def _initialize_llm(self):
|
47 |
+
"""Initialize MLC LLM engine with optimized settings"""
|
48 |
+
try:
|
49 |
+
return MLCEngine(
|
50 |
+
model="HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC",
|
51 |
+
mode="server",
|
52 |
+
device="cuda" if os.getenv("USE_CUDA", "0") == "1" else "auto",
|
53 |
+
temperature=0.1,
|
54 |
+
max_tokens=512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
+
except Exception as e:
|
57 |
+
logger.error(f"Failed to initialize MLC Engine: {e}")
|
58 |
+
raise
|
59 |
|
60 |
def process_pdf(self, pdf_path: str) -> Dict:
|
61 |
+
"""Main PDF processing pipeline"""
|
62 |
start_time = time.time()
|
63 |
|
|
|
64 |
try:
|
65 |
doc = fitz.open(pdf_path)
|
66 |
except Exception as e:
|
|
|
70 |
text_blocks = []
|
71 |
tables = []
|
72 |
|
|
|
73 |
for page_num, page in enumerate(doc):
|
|
|
74 |
blocks = self._extract_text_blocks(page)
|
75 |
+
text_blocks.extend([b for b in blocks if len(b.strip()) >= 10])
|
|
|
|
|
|
|
|
|
76 |
tables.extend(self._extract_tables(page, page_num))
|
77 |
|
|
|
78 |
products = []
|
79 |
for idx, block in enumerate(text_blocks):
|
|
|
|
|
80 |
product = self._process_text_block(block)
|
81 |
+
if product and self._is_valid_product(product):
|
82 |
product.tables = tables
|
83 |
+
products.append(product.to_dict())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
|
86 |
return {"products": products, "tables": tables}
|
87 |
|
88 |
+
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
89 |
+
"""Process text with MLC LLM using optimized prompt"""
|
90 |
+
try:
|
91 |
+
prompt = self._generate_query_prompt(text)
|
92 |
+
response = self.llm.chat.completions.create(
|
93 |
+
messages=[{"role": "user", "content": prompt}],
|
94 |
+
stream=False
|
95 |
+
)
|
96 |
+
return self._parse_response(response.choices[0].message.content)
|
97 |
+
except Exception as e:
|
98 |
+
logger.warning(f"Error processing text block: {e}")
|
99 |
+
return None
|
100 |
+
|
101 |
+
def _generate_query_prompt(self, text: str) -> str:
|
102 |
+
"""Generate structured prompt for better JSON response"""
|
103 |
+
return f"""Extract product specifications as JSON from this text:
|
104 |
+
|
105 |
+
Text: {text}
|
106 |
+
|
107 |
+
Return valid JSON with exactly these keys:
|
108 |
+
- name (string)
|
109 |
+
- description (string, optional)
|
110 |
+
- price (number, optional)
|
111 |
+
- attributes (object with key-value pairs, optional)
|
112 |
+
|
113 |
+
Example:
|
114 |
+
{{
|
115 |
+
"name": "Example Product",
|
116 |
+
"description": "High-quality example item",
|
117 |
+
"price": 99.99,
|
118 |
+
"attributes": {{"color": "red", "size": "XL"}}
|
119 |
+
}}"""
|
120 |
+
|
121 |
+
def _is_valid_product(self, product: ProductSpec) -> bool:
|
122 |
+
"""Validate extracted product data"""
|
123 |
+
return any([
|
124 |
+
product.name,
|
125 |
+
product.description,
|
126 |
+
product.price,
|
127 |
+
product.attributes
|
128 |
+
])
|
129 |
+
|
130 |
def _extract_text_blocks(self, page) -> List[str]:
|
131 |
"""Extract text blocks from a PDF page using PyMuPDF's blocks method."""
|
132 |
blocks = []
|
|
|
156 |
logger.warning(f"Error extracting tables from page {page_num + 1}: {e}")
|
157 |
return tables
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
160 |
"""Parse the LLM's response to extract a product specification."""
|
161 |
try:
|
|
|
190 |
|
191 |
|
192 |
if __name__ == "__main__":
|
|
|
193 |
pdf_path = "path/to/your/pdf_file.pdf"
|
194 |
result, message = process_pdf_catalog(pdf_path)
|
195 |
+
print(json.dumps(result, indent=2), message)
|