File size: 7,527 Bytes
5d2e1c0
 
d4ba349
 
5d2e1c0
d4ba349
96ccc11
d4ba349
 
79f7c2a
 
43ed6ba
5d2e1c0
 
 
d4ba349
 
 
329ffa9
d4ba349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2e1c0
 
d4ba349
 
 
08e58ba
 
c0f9599
 
 
 
 
 
 
 
 
 
d4ba349
 
 
 
 
 
08e58ba
 
e507485
d4ba349
08e58ba
d4ba349
 
 
 
 
 
9056b59
77b110d
d4ba349
 
 
 
5d2e1c0
 
d4ba349
5d2e1c0
 
 
 
d4ba349
5d2e1c0
061f1a0
 
d4ba349
 
5d2e1c0
d4ba349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d42234
d4ba349
 
9056b59
 
 
3d42234
9056b59
3d42234
9056b59
 
 
 
3d42234
9056b59
3d42234
9056b59
d4ba349
 
 
 
 
 
5d2e1c0
 
d4ba349
9056b59
d4ba349
 
 
 
 
 
5d2e1c0
 
3d42234
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
import os 
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import login, hf_hub_download

login(token=os.environ.get("HF_token"))

MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, width=2048, height=256, progress=gr.Progress(track_tqdm=True)):
    """
    Perform image editing using the FLUX.1 Kontext pipeline.
    
    This function takes an input image and a text prompt to generate a modified version
    of the image based on the provided instructions. It uses the FLUX.1 Kontext model
    for contextual image editing tasks.
    
    Args:
        input_image (PIL.Image.Image): The input image to be edited. Will be converted
            to RGB format if not already in that format.
        prompt (str): Text description of the desired edit to apply to the image.
            Examples: "Remove glasses", "Add a hat", "Change background to beach".
        seed (int, optional): Random seed for reproducible generation. Defaults to 42.
            Must be between 0 and MAX_SEED (2^31 - 1).
        randomize_seed (bool, optional): If True, generates a random seed instead of
            using the provided seed value. Defaults to False.
        guidance_scale (float, optional): Controls how closely the model follows the
            prompt. Higher values mean stronger adherence to the prompt but may reduce
            image quality. Range: 1.0-10.0. Defaults to 2.5.
        steps (int, optional): Controls how many steps to run the diffusion model for.
            Range: 1-30. Defaults to 28.
        progress (gr.Progress, optional): Gradio progress tracker for monitoring
            generation progress. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        tuple: A 3-tuple containing:
            - PIL.Image.Image: The generated/edited image
            - int: The seed value used for generation (useful when randomize_seed=True)
            - gr.update: Gradio update object to make the reuse button visible
    
    Example:
        >>> edited_image, used_seed, button_update = infer(
        ...     input_image=my_image,
        ...     prompt="Add sunglasses",
        ...     seed=123,
        ...     randomize_seed=False,
        ...     guidance_scale=2.5
        ... )
    """
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    if input_image:
        input_image = input_image.convert("RGB")
        original_width, original_height = input_image.width, input_image.height
        now_width, now_height = input_image.width, input_image.height
        scale = 2
        if (input_image.height // input_image.width >= 5 or input_image.width // input_image.height >= 5) and (input_image.width < 2560 and input_image.height < 2560):
            # if input_image.height < input_image.width:
            #     input_image.resize((original_width, original_height * scale ))
            #     now_width, now_height = input_image.width, input_image.height * scale 
            # else:
            #     input_image.resize((original_width * scale, original_height))
            #     now_width, now_height = input_image.width * scale, input_image.height
            input_image.resize((original_width, original_height * scale ))
            now_width, now_height = input_image.width, input_image.height * scale 
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=torch.Generator().manual_seed(seed),
            width=now_width,
            height=now_height,
            _auto_resize=False,
        ).images[0]
        image = image.resize((original_width, original_height))
    else:
        image = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=torch.Generator().manual_seed(seed),
            width=width,
            height=height,
        ).images[0]
    return image, seed, gr.update(visible=True)

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Kontext [dev]
        当上传参考图后,不能自定义输出尺寸,输出尺寸默认和输入图像的尺寸相同。
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
        """)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Upload the image for editing", type="pil")
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                with gr.Accordion("Advanced Settings", open=False):
                    
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=10,
                        step=0.1,
                        value=2.5,
                    )       
                    
                    steps = gr.Slider(
                        label="Steps",
                        minimum=1,
                        maximum=30,
                        value=20,
                        step=1
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=0,
                        maximum=10000,
                        step=1,
                        value=2048,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=0,
                        maximum=10000,
                        step=1,
                        value=256,
                    )
                    
            with gr.Column():
                result = gr.Image(label="Result", show_label=False, interactive=False)
                reuse_button = gr.Button("Reuse this image", visible=False)
        
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps, width, height],
        outputs = [result, seed, reuse_button]
    )
    reuse_button.click(
        fn = lambda image: image,
        inputs = [result],
        outputs = [input_image]
    )

demo.launch()