File size: 1,479 Bytes
df297aa
0d4fb06
 
 
df297aa
0d4fb06
 
 
df297aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4fb06
df297aa
 
 
 
 
 
 
 
 
0d4fb06
df297aa
 
0d4fb06
df297aa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Carregar o modelo e tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

# Fun莽茫o para gerar resposta
def generate_response(user_input, chat_history=None):
    if chat_history is None:
        chat_history = []
    
    # Codificar a entrada do usu谩rio
    new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
    
    # Concatenar a entrada do usu谩rio com o hist贸rico da conversa
    if chat_history:
        bot_input_ids = torch.cat([chat_history, new_user_input_ids], dim=-1)
    else:
        bot_input_ids = new_user_input_ids
    
    # Gerar resposta
    response_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
    
    # Decodificar a resposta
    response = tokenizer.decode(response_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
    
    # Atualizar o hist贸rico da conversa
    chat_history = response_ids
    
    return response, chat_history

# Interface Gradio
demo = gr.Interface(
    fn=generate_response,
    inputs=["text"],
    outputs=["text"],
    title="DialoGPT Conversa",
    description="Converse com o modelo DialoGPT",
    allow_flagging="never"
)

# Inicializar o hist贸rico da conversa
chat_history = None

# Lan莽ar a interface
demo.launch()