import os import asyncio import logging from datetime import datetime, timedelta from telegram import Update from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler, filters, ContextTypes from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import re import nltk from nltk.tokenize import sent_tokenize import torch # تنظیم مسیر cache برای Transformers #cache_dir = '/tmp/transformers_cache' #os.environ['TRANSFORMERS_CACHE'] = cache_dir #os.environ['HF_HOME'] = cache_dir #os.makedirs(cache_dir, exist_ok=True) # تنظیم مسیر nltk try: nltk.download('punkt', download_dir='./nltk_data', quiet=True) nltk.data.path.append('./nltk_data') except: pass # تنظیمات لاگ logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO ) logger = logging.getLogger(__name__) # اطلاعات مدل MODEL_NAME = "nafisehNik/mt5-persian-summary" model = None tokenizer = None # ذخیره پیام‌ها برای هر چت MAX_MESSAGES_PER_CHAT = 1000 class MessageStore: def __init__(self): self.messages = {} def add_message(self, chat_id, user_id, username, text, timestamp): if chat_id not in self.messages: self.messages[chat_id] = [] if len(self.messages[chat_id]) >= MAX_MESSAGES_PER_CHAT: self.messages[chat_id] = self.messages[chat_id][-MAX_MESSAGES_PER_CHAT // 2:] self.messages[chat_id].append({ "user_id": user_id, "username": username, "text": text, "timestamp": timestamp }) def get_messages(self, chat_id, count=50, hours_back=None): if chat_id not in self.messages: return [] messages = self.messages[chat_id] if hours_back: cutoff = datetime.now() - timedelta(hours=hours_back) messages = [m for m in messages if m["timestamp"] >= cutoff] return messages[-count:] if count else messages message_store = MessageStore() def load_persian_model(): global model, tokenizer try: logger.info(f"Loading Persian model: {MODEL_NAME}") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float32 ) model.eval() logger.info("Model loaded successfully") except Exception as e: logger.error(f"Error loading Persian model: {e}") model, tokenizer = None, None def preprocess_persian_text(text): text = re.sub(r'\s+', ' ', text) text = re.sub(r'\n+', '\n', text) text = re.sub(r'\d{2}:\d{2}', '', text) text = re.sub(r'@\w+', '', text) text = re.sub(r'http\S+', '', text) text = re.sub(r'[^\w\s\u0600-\u06FF]', ' ', text) return text.strip() def chunk_text_smart(text, max_length=300): try: sentences = sent_tokenize(text) except: sentences = re.split(r'[.!?؟]+', text) chunks = [] current = "" for sentence in sentences: if len(current + sentence) < max_length: current += sentence + " " else: if current: chunks.append(current.strip()) current = sentence + " " if current: chunks.append(current.strip()) return chunks def summarize_messages(messages_data): global model, tokenizer if not model or not tokenizer: return "❌ مدل خلاصه‌سازی در دسترس نیست" if not messages_data: return "❌ پیامی برای خلاصه‌سازی یافت نشد" try: text = "" for msg in messages_data: username = msg['username'] or "کاربر" text += f"{username}: {msg['text']}\n" text = preprocess_persian_text(text) if len(text) < 100: return "❌ متن برای خلاصه‌سازی بسیار کوتاه است" chunks = chunk_text_smart(text, max_length=400) summaries = [] for chunk in chunks[:2]: inputs = tokenizer.encode(f"خلاصه: {chunk}", return_tensors="pt", max_length=512, truncation=True) output = model.generate( inputs, max_length=100, min_length=30, length_penalty=1.2, num_beams=3, early_stopping=True, no_repeat_ngram_size=3 ) summary = tokenizer.decode(output[0], skip_special_tokens=True) summaries.append(summary.replace("خلاصه:", "").strip()) if not summaries: return "❌ خطا در خلاصه‌سازی" stats = f"\n\n📊 آمار: {len(messages_data)} پیام، {len(text)} کاراکتر" return f"📝 خلاصه گفتگو:\n\n" + "\n\n".join(summaries) + stats except Exception as e: logger.error(f"Summarization error: {e}") return "❌ خطا در خلاصه‌سازی" def parse_summary_request(text): text = text.lower() count = 50 hours = None match = re.search(r'(\d+)\s*(پیام|تا|عدد)', text) if match: count = min(int(match.group(1)), 200) match = re.search(r'(\d+)\s*(ساعت|روز)', text) if match: hours = int(match.group(1)) if "روز" in match.group(2): hours *= 24 hours = min(hours, 72) return count, hours async def start(update: Update, context: ContextTypes.DEFAULT_TYPE): await update.message.reply_text("🤖 سلام! برای خلاصه‌سازی، عبارت «خلاصه» به همراه تعداد پیام یا مدت زمان را بفرست.") async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE): message = update.message if not message or not message.text: return chat_id = message.chat_id user_id = message.from_user.id username = message.from_user.username text = message.text.strip() timestamp = message.date or datetime.utcnow() message_store.add_message(chat_id, user_id, username, text, timestamp) if "خلاصه" in text: count, hours = parse_summary_request(text) msgs = message_store.get_messages(chat_id, count, hours) summary = summarize_messages(msgs) await update.message.reply_text(summary) if __name__ == "__main__": load_persian_model() TOKEN = os.getenv("BOT_TOKEN") # یا مستقیم وارد کن: 'your_token_here' if not TOKEN: raise ValueError("❌ توکن تلگرام تعریف نشده.") app = ApplicationBuilder().token(TOKEN).build() app.add_handler(CommandHandler("start", start)) app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message)) logger.info("Starting bot...") app.run_polling()