AvvoChat_v02 / app.py
AndreaAlessandrelli4's picture
Update app.py
d7aab58 verified
raw
history blame
4.42 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "AndreaAlessandrelli4/AvvoChat_AITA_v04"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
conversation.append({"role": "system", "content":
'''Sei un assistente AI di nome 'AvvoChat' specializzato nel rispondere a domande riguardanti la legge Italiana.
Rispondi in lingua italiana in modo chiaro, semplice ed esaustivo alle domande che ti vengono fornite.
Le risposte devono essere sintetiche e chiare di massimo 500 token o anche più corte.
Firmati alla fine di ogni risposta '-AvvoChat'.'''})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Chat troppo lunga superati {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Posso fare una grigliata sul balcone di casa?"],
["Se esco di casa senza documento di identità posso essere multato?"],
["Le persone single possono adottare un bambino?"],
["Posso usare un'immagine prodotto dall'intelligenza artificiale?"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown("# AvvoChat")
gr.Markdown("Fai una domanda riguardante la legge italiana all'AvvoChat e ricevi una spiegazione semplice al tuo dubbio.")
with gr.Row():
with gr.Column(scale=0.5, min_width = 100):
gr.Image("AvvoVhat.png", width = 50, height=200),
with gr.Column(scale=6):
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()