Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
from typing import Iterator
|
4 |
-
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
@@ -22,6 +24,52 @@ if torch.cuda.is_available():
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
24 |
tokenizer.use_default_system_prompt = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
@spaces.GPU
|
@@ -44,7 +92,19 @@ def generate(
|
|
44 |
Firmati alla fine di ogni risposta '-AvvoChat'.'''})
|
45 |
for user, assistant in chat_history:
|
46 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
50 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
from typing import Iterator
|
4 |
+
from haystack import Document
|
5 |
+
from haystack import Pipeline
|
6 |
+
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
import torch
|
|
|
24 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
tokenizer.use_default_system_prompt = False
|
27 |
+
query_pipeline1 = Pipeline()
|
28 |
+
query_pipeline1.add_component(
|
29 |
+
"text_embedder",
|
30 |
+
SentenceTransformersTextEmbedder(
|
31 |
+
model="intfloat/multilingual-e5-large",
|
32 |
+
prefix="query:",
|
33 |
+
))
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
key='4vNfIDO8PmFwCloxA40y2b4PSHm62vmcuPoM'
|
39 |
+
url = "https://mmchpi0yssanukk5t3ofta.c0.europe-west3.gcp.weaviate.cloud"
|
40 |
+
# instanziamento client weaviate
|
41 |
+
client = weaviate.Client(
|
42 |
+
url = url,
|
43 |
+
auth_client_secret=weaviate.auth.AuthApiKey(api_key=key),
|
44 |
+
#embedded_options=weaviate.embedded.EmbeddedOptions(),
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def vettorizz_query(query):
|
52 |
+
vector_query=query_pipeline1.run({ "text_embedder": {"text": query},
|
53 |
+
})['text_embedder']['embedding']
|
54 |
+
return query, vector_query
|
55 |
+
|
56 |
+
def richiamo_materiali(query, alpha, N_items):
|
57 |
+
text_query, vett_query = vettorizz_query(query)
|
58 |
+
try:
|
59 |
+
materiali = client.query.get("Default", ["content"]).with_hybrid(
|
60 |
+
query=text_query,
|
61 |
+
vector=vett_query,
|
62 |
+
alpha=alpha,
|
63 |
+
fusion_type=HybridFusion.RELATIVE_SCORE,
|
64 |
+
).with_additional(["score"]).with_limit(N_items).do()
|
65 |
+
|
66 |
+
mat = [{'score':i['_additional']['score'],'content':i['content']} for i in materiali['data']['Get']['Default']]
|
67 |
+
except:
|
68 |
+
mat =[{'score':0, 'content':'NESSUN MATERIALE FORNITO'}]
|
69 |
+
|
70 |
+
return mat
|
71 |
+
|
72 |
+
|
73 |
|
74 |
|
75 |
@spaces.GPU
|
|
|
92 |
Firmati alla fine di ogni risposta '-AvvoChat'.'''})
|
93 |
for user, assistant in chat_history:
|
94 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
95 |
+
materiali = richiamo_materiali(message, alpha=1.0, n_items=5)
|
96 |
+
documenti = ''
|
97 |
+
for idx, d in enumerate(materiali):
|
98 |
+
if idx<len(materiali)-1:
|
99 |
+
documenti += f"{d['content']}; "
|
100 |
+
else:
|
101 |
+
documenti += f"{d['content']}. "
|
102 |
+
text = f'''Basandoti sulle tue conoscenze e usando le informazioni contenute che ti fornisco di seguito.
|
103 |
+
CONTESTO:
|
104 |
+
{documenti}
|
105 |
+
Rispondi in modo esaustivo, evitando inutili giri di parole o ripetizioni, alla seguente domanda.
|
106 |
+
{message}'''
|
107 |
+
conversation.append({"role": "user", "content": text})
|
108 |
|
109 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
110 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|