import os from threading import Thread from typing import Iterator from haystack import Document from haystack import Pipeline from haystack.components.embedders import SentenceTransformersTextEmbedder import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "AndreaAlessandrelli4/AvvoChat_AITA_v04" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False query_pipeline1 = Pipeline() query_pipeline1.add_component( "text_embedder", SentenceTransformersTextEmbedder( model="intfloat/multilingual-e5-large", prefix="query:", )) key='4vNfIDO8PmFwCloxA40y2b4PSHm62vmcuPoM' url = "https://mmchpi0yssanukk5t3ofta.c0.europe-west3.gcp.weaviate.cloud" # instanziamento client weaviate client = weaviate.Client( url = url, auth_client_secret=weaviate.auth.AuthApiKey(api_key=key), #embedded_options=weaviate.embedded.EmbeddedOptions(), ) def vettorizz_query(query): vector_query=query_pipeline1.run({ "text_embedder": {"text": query}, })['text_embedder']['embedding'] return query, vector_query def richiamo_materiali(query, alpha, N_items): text_query, vett_query = vettorizz_query(query) try: materiali = client.query.get("Default", ["content"]).with_hybrid( query=text_query, vector=vett_query, alpha=alpha, fusion_type=HybridFusion.RELATIVE_SCORE, ).with_additional(["score"]).with_limit(N_items).do() mat = [{'score':i['_additional']['score'],'content':i['content']} for i in materiali['data']['Get']['Default']] except: mat =[{'score':0, 'content':'NESSUN MATERIALE FORNITO'}] return mat @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, #temperature: float = 0.6, do_sample = False, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] conversation.append({"role": "system", "content": '''Sei un assistente AI di nome 'AvvoChat' specializzato nel rispondere a domande riguardanti la legge Italiana. Rispondi in lingua italiana in modo chiaro, semplice ed esaustivo alle domande che ti vengono fornite. Le risposte devono essere sintetiche e chiare di massimo 500 token o anche più corte. Firmati alla fine di ogni risposta '-AvvoChat'.'''}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) materiali = richiamo_materiali(message, alpha=1.0, n_items=5) documenti = '' for idx, d in enumerate(materiali): if idx MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Domanda e/o conversazione troppo lungha: superati {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=False, top_p=top_p, top_k=top_k, #temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ #gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), #gr.Slider( # label="Temperature", # minimum=0.1, # maximum=4.0, # step=0.1, # value=0.6, #), gr.Checkbox( label = "Do-sample(False)", value = False, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Posso fare una grigliata sul balcone di casa?"], ["Se esco di casa senza documento di identità posso essere multato?"], ["Le persone single possono adottare un bambino?"], ["Posso usare un'immagine prodotto dall'intelligenza artificiale?"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown("# AvvoChat") gr.Markdown("Fai una domanda riguardante la legge italiana all'AvvoChat e ricevi una spiegazione semplice al tuo dubbio.") with gr.Row(): with gr.Column(scale=0.5, min_width = 100): gr.Image("AvvoVhat.png", width = 50, height=200), with gr.Column(scale=6): chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()