Spaces:
Sleeping
Sleeping
File size: 1,323 Bytes
813adbe 4e3d055 3b1b66f 4e3d055 0e5efd2 ce2ceca 4e3d055 3e088d1 ce2ceca 3e088d1 ce2ceca 3e088d1 ce2ceca 3e088d1 ce2ceca 4e3d055 ce2ceca 4e3d055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the model and tokenizer for English to Hawaiian Pidgin translation
tokenizer = AutoTokenizer.from_pretrained("claudiatang/flan-t5-base-eng-hwp")
model = AutoModelForSeq2SeqLM.from_pretrained("claudiatang/flan-t5-base-eng-hwp")
def translate_to_hawaiian(text):
# Add language direction instruction (this may improve translation)
input_text = f"translate English to Hawaiian Pidgin: {text}"
# Encoding the input text for the model
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
# Generate translation using the model
translated = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
# Decode the generated token IDs into a string
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
# Streamlit interface
st.title("Hawaiian Pidgin Translator")
st.write("This app translates English text to Hawaiian Pidgin using a language model.")
# Input text from the user
text_input = st.text_area("Enter text to translate:")
# Translate and display the result
if text_input:
translation = translate_to_hawaiian(text_input)
st.subheader("Translation:")
st.write(translation)
|