Anupam251272's picture
Create app.py
36bb1ae verified
import torch
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import json
from datetime import datetime
class LegalAISystem:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = AutoTokenizer.from_pretrained('nlpaueb/legal-bert-base-uncased')
self.model = AutoModelForSequenceClassification.from_pretrained('nlpaueb/legal-bert-base-uncased')
self.model.to(self.device)
self.label_encoder = LabelEncoder()
self.case_history = []
def preprocess_data(self, text):
# Clean and normalize text
text = str(text).lower().strip()
# Add more preprocessing steps as needed
return text
def extract_features(self, text):
# Tokenize and prepare features
inputs = self.tokenizer(
text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
return inputs
def predict_outcome(self, case_text):
# Preprocess input
processed_text = self.preprocess_data(case_text)
# Extract features
features = self.extract_features(processed_text)
# Make prediction
with torch.no_grad():
outputs = self.model(**features)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get prediction probabilities
probs = predictions.cpu().numpy()[0]
# Store in case history
self.case_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'case_text': case_text,
'prediction_probs': probs.tolist()
})
return {
'Favorable': float(probs[1]),
'Unfavorable': float(probs[0])
}
def analyze_precedents(self, case_text):
# Implement similarity search for relevant precedents
# This is a simplified version
return ["Precedent 1: Smith v. Jones (2019)",
"Precedent 2: Brown v. State (2020)"]
def generate_report(self, case_text, prediction, precedents):
report = f"""
Legal Case Analysis Report
========================
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Case Summary:
{case_text[:500]}...
Prediction:
- Favorable Outcome: {prediction['Favorable']:.2%}
- Unfavorable Outcome: {prediction['Unfavorable']:.2%}
Relevant Precedents:
{chr(10).join(precedents)}
Note: This is an AI-generated analysis and should be reviewed by legal professionals.
"""
return report
def create_gradio_interface():
legal_ai = LegalAISystem()
def process_case(case_text):
# Analyze case
prediction = legal_ai.predict_outcome(case_text)
precedents = legal_ai.analyze_precedents(case_text)
report = legal_ai.generate_report(case_text, prediction, precedents)
# Create visualization data
prob_chart = {
"Favorable": prediction['Favorable'],
"Unfavorable": prediction['Unfavorable']
}
return (
report,
prob_chart,
f"Confidence: {max(prediction.values()):.2%}"
)
# Create Gradio interface
iface = gr.Interface(
fn=process_case,
inputs=[
gr.Textbox(label="Enter Case Details", lines=10)
],
outputs=[
gr.Textbox(label="Analysis Report", lines=10),
gr.Label(label="Outcome Probabilities"),
gr.Textbox(label="Model Confidence")
],
title="AI Legal Case Analysis System",
description="Enter case details to get real-time analysis and predictions."
)
return iface
# Launch the interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True, debug=True)