File size: 22,287 Bytes
afdad4f
0332e5e
 
56528d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5910691
 
 
 
 
 
bc71126
637679a
3289837
aad3504
c1db44b
5910691
aad3504
 
 
 
 
 
 
 
3289837
aad3504
 
5910691
56528d4
5910691
 
 
 
 
 
 
aad3504
 
 
5910691
 
 
 
56528d4
aad3504
 
 
 
5910691
aad3504
 
 
 
 
 
 
56528d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ccbd5a
 
 
 
 
 
56528d4
 
1ccbd5a
56528d4
 
1ccbd5a
56528d4
 
aad3504
 
 
5910691
aad3504
 
 
56528d4
5910691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad3504
 
 
 
 
 
 
 
 
5910691
56528d4
5910691
aad3504
 
5910691
 
 
 
 
 
 
 
aad3504
 
5910691
aad3504
5910691
 
 
 
 
 
 
 
aad3504
 
5910691
3289837
 
aad3504
56528d4
3289837
 
 
 
 
 
 
 
 
 
 
 
 
 
56528d4
 
 
 
 
 
 
 
5910691
56528d4
5910691
 
aad3504
5910691
 
 
 
 
 
 
56528d4
 
 
 
1ccbd5a
 
 
 
56528d4
 
aad3504
 
 
3289837
aad3504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56528d4
ee35562
 
aad3504
5910691
aad3504
5910691
1ccbd5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463



# import gradio as gr
# import pandas as pd 
# import numpy as np 
# import pickle
# import sklearn
# from datasets import load_dataset
# import joblib
# import requests  


# # Read the data
# data = pd.read_csv("mldata.csv")

# # Function to load model based on selection
# def load_model(model_choice):
#     if model_choice == "Random Forest":
#         with open('rfweights (1).pkl', 'rb') as pickleFile:
#             return pickle.load(pickleFile)
#     elif model_choice == "Decision Tree":
#         with open('dtreeweights.pkl', 'rb') as pickleFile:
#             return pickle.load(pickleFile)
   
#     else:
#         raise ValueError("Invalid model selection")

# # Prepare categorical data (same as original code)
# categorical_cols = data[[
#     'certifications',
#     'workshops',
#     'Interested subjects',
#     'interested career area ',
#     'Type of company want to settle in?',
#     'Interested Type of Books'
# ]]

# # Assign category codes
# for i in categorical_cols:
#     data[i] = data[i].astype('category')
#     data[i] = data[i].cat.codes

# # Create reference dictionaries for embeddings (same as original code)
# def create_embedding_dict(column):
#     unique_names = list(categorical_cols[column].unique())
#     unique_codes = list(data[column].unique())
#     return dict(zip(unique_names, unique_codes))

# certificates_references = create_embedding_dict('certifications')
# workshop_references = create_embedding_dict('workshops')
# subjects_interest_references = create_embedding_dict('Interested subjects')
# career_interest_references = create_embedding_dict('interested career area ')
# company_intends_references = create_embedding_dict('Type of company want to settle in?')
# book_interest_references = create_embedding_dict('Interested Type of Books')

# # Prediction function (modified to accept model choice)
# def rfprediction(model_choice, name, logical_thinking, hackathon_attend, coding_skills, public_speaking_skills,
#                  self_learning, extra_course, certificate_code, worskhop_code, read_writing_skill, memory_capability,
#                  subject_interest, career_interest, company_intend, senior_elder_advise, book_interest, introvert_extro,
#                  team_player, management_technical, smart_hardworker):
#     # Load the selected model
#     rfmodel = load_model(model_choice)
    
#     # Create DataFrame (same as original code)
#     df = pd.DataFrame.from_dict(
#         {
#             "logical_thinking": [logical_thinking],
#             "hackathon_attend": [hackathon_attend],
#             "coding_skills": [coding_skills],
#             "public_speaking_skills": [public_speaking_skills],
#             "self_learning": [self_learning],
#             "extra_course": [extra_course],
#             "certificate": [certificate_code],
#             "workshop": [worskhop_code],
#             "read_writing_skills": [
#                     (0 if "poor" in read_writing_skill else 1 if "medium" in read_writing_skill else 2)
#                 ],
#             "memory_capability": [
#                     (0 if "poor" in memory_capability else 1 if "medium" in memory_capability else 2)   
#                 ],
#             "subject_interest": [subject_interest],
#             "career_interest": [career_interest],
#             "company_intend": [company_intend],
#             "senior_elder_advise": [senior_elder_advise],
#             "book_interest": [book_interest],
#             "introvert_extro": [introvert_extro],
#             "team_player": [team_player],
#             "management_technical":[management_technical],
#             "smart_hardworker": [smart_hardworker]
#         }
#     )
    
#     # Replace string values with numeric representations
#     df = df.replace({
#         "certificate": certificates_references, 
#         "workshop": workshop_references,
#         "subject_interest": subjects_interest_references,
#         "career_interest": career_interest_references,
#         "company_intend": company_intends_references,
#         "book_interest": book_interest_references
#     })
    
#     # Dummy encoding (same as original code)
#     userdata_list = df.values.tolist()
    
#     # Management-Technical dummy encoding
#     if(df["management_technical"].values == "Management"):
#         userdata_list[0].extend([1])
#         userdata_list[0].extend([0])
#         userdata_list[0].remove('Management')
#     elif(df["management_technical"].values == "Technical"):
#         userdata_list[0].extend([0])
#         userdata_list[0].extend([1])
#         userdata_list[0].remove('Technical')
#     else: 
#         return "Error in Management-Technical encoding"

#     # Smart-Hard worker dummy encoding
#     if(df["smart_hardworker"].values == "smart worker"):
#         userdata_list[0].extend([1])
#         userdata_list[0].extend([0])
#         userdata_list[0].remove('smart worker')
#     elif(df["smart_hardworker"].values == "hard worker"):
#         userdata_list[0].extend([0])
#         userdata_list[0].extend([1])
#         userdata_list[0].remove('hard worker')
#     else: 
#         return "Error in Smart-Hard worker encoding"

#     # Prediction
#     prediction_result_all = rfmodel.predict_proba(userdata_list)
    
#     # Create result dictionary
#     result_list = {
#         "Applications Developer": float(prediction_result_all[0][0]),
#         "CRM Technical Developer": float(prediction_result_all[0][1]),
#         "Database Developer": float(prediction_result_all[0][2]),
#         "Mobile Applications Developer": float(prediction_result_all[0][3]),
#         "Network Security Engineer": float(prediction_result_all[0][4]),
#         "Software Developer": float(prediction_result_all[0][5]),
#         "Software Engineer": float(prediction_result_all[0][6]),
#         "Software Quality Assurance (QA)/ Testing": float(prediction_result_all[0][7]),
#         "Systems Security Administrator": float(prediction_result_all[0][8]),
#         "Technical Support": float(prediction_result_all[0][9]),
#         "UX Designer": float(prediction_result_all[0][10]),
#         "Web Developer": float(prediction_result_all[0][11]),
#     }
#     return result_list

# # Lists for dropdown menus (same as original code)
# cert_list = ["app development", "distro making", "full stack", "hadoop", "information security", "machine learning", "python", "r programming", "shell programming"]
# workshop_list = ["cloud computing", "data science", "database security", "game development", "hacking", "system designing", "testing", "web technologies"]
# skill = ["excellent", "medium", "poor"]
# subject_list = ["cloud computing", "Computer Architecture", "data engineering", "hacking", "IOT", "Management", "networks", "parallel computing", "programming", "Software Engineering"]
# career_list = ["Business process analyst", "cloud computing", "developer", "security", "system developer", "testing"]
# company_list = ["BPA", "Cloud Services", "Finance", "Product based", "product development", "SAaS services", "Sales and Marketing", "Service Based", "Testing and Maintainance Services", "Web Services"]
# book_list = ["Action and Adventure", "Anthology", "Art", "Autobiographies", "Biographies", "Childrens", "Comics","Cookbooks","Diaries","Dictionaries","Drama","Encyclopedias","Fantasy","Guide","Health","History","Horror","Journals","Math","Mystery","Poetry","Prayer books","Religion-Spirituality","Romance","Satire","Science","Science fiction","Self help","Series","Travel","Trilogy"]
# Choice_list = ["Management", "Technical"]
# worker_list = ["hard worker", "smart worker"]

# # Create Gradio interface (modified to include model selection)
# demo = gr.Interface(
#     fn=rfprediction, 
#     inputs=[
#         gr.Dropdown(["Random Forest", "Decision Tree"], label="Select Machine Learning Model"),
#         gr.Textbox(placeholder="What is your name?", label="Name"),
#         gr.Slider(minimum=1, maximum=9, value=3, step=1, label="Are you a logical thinking person?", info="Scale: 1 - 9"),
#         gr.Slider(minimum=0, maximum=6, value=0, step=1, label="Do you attend any Hackathons?", info="Scale: 0 - 6 | 0 - if not attended any"),
#         gr.Slider(minimum=1, maximum=9, value=5, step=1, label="How do you rate your coding skills?", info="Scale: 1 - 9"),
#         gr.Slider(minimum=1, maximum=9, value=3, step=1, label="How do you rate your public speaking skills/confidency?", info="Scale: 1 - 9"),
#         gr.Radio({"Yes", "No"}, type="index", label="Are you a self-learning person? *"),
#         gr.Radio({"Yes", "No"}, type="index", label="Do you take extra courses in uni (other than IT)? *"),
#         gr.Dropdown(cert_list, label="Select a certificate you took!"),
#         gr.Dropdown(workshop_list, label="Select a workshop you attended!"),
#         gr.Dropdown(skill, label="Select your read and writing skill"),
#         gr.Dropdown(skill, label="Is your memory capability good?"),
#         gr.Dropdown(subject_list, label="What subject you are interested in?"),
#         gr.Dropdown(career_list, label="Which IT-Career do you have interests in?"),
#         gr.Dropdown(company_list, label="Do you have any interested company that you intend to settle in?"),
#         gr.Radio({"Yes", "No"}, type="index", label="Do you ever seek any advices from senior or elders? *"),
#         gr.Dropdown(book_list, label="Select your interested genre of book!"),
#         gr.Radio({"Yes", "No"}, type="index", label="Are you an Introvert?| No - extrovert *"),
#         gr.Radio({"Yes", "No"}, type="index", label="Ever worked in a team? *"),
#         gr.Dropdown(Choice_list, label="Which area do you prefer: Management or Technical?"),
#         gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?")
#     ],
#     outputs=gr.Label(num_top_classes=5), 
#     title="IT-Career Recommendation System: TMI4033 Colletive Intelligence, Group 12",
#     description="Members: Derrick Lim Kin Yeap 74597, Jason Jong Sheng Tat 75125, Jason Ng Yong Xing 75127, Muhamad Hazrie Bin Suhkery 73555 "
# )

# url = "https://jobs-api14.p.rapidapi.com/v2/list"
# querystring = {
#     "query":"Web Developer",
#     "location":"India",
#     "autoTranslateLocation":"false",
#     "remoteOnly":"false",
#     "employmentTypes":"fulltime;parttime;intern;contractor"
# }
# headers = {
#     "x-rapidapi-key": "714f5a2539msh798d996c3243876p19c71ajsnfcd7ce481cb9",
#     "x-rapidapi-host": "jobs-api14.p.rapidapi.com"
# }


# # Main execution
# if __name__ == "__main__":
#     # Fetch job listings before launching the app
#     try:
#         response = requests.get(url, headers=headers, params=querystring)
#         job_listings = response.json()
#         print("Job Listings Retrieved Successfully")
#         # You could potentially store or process job_listings here
#     except requests.RequestException as e:
#         print(f"Error fetching job listings: {e}")
    
#     demo.launch(share=True)


import gradio as gr
import pandas as pd 
import numpy as np 
import pickle
import sklearn
from datasets import load_dataset
import joblib
import requests  

# Read the data
data = pd.read_csv("mldata.csv")

# Function to load model based on selection
def load_model(model_choice):
    if model_choice == "Random Forest":
        with open('rfweights (1).pkl', 'rb') as pickleFile:
            return pickle.load(pickleFile)
    elif model_choice == "Decision Tree":
        with open('dtreeweights.pkl', 'rb') as pickleFile:
            return pickle.load(pickleFile)
   
    else:
        raise ValueError("Invalid model selection")

# Prepare categorical data 
categorical_cols = data[[
    'certifications',
    'workshops',
    'Interested subjects',
    'interested career area ',
    'Type of company want to settle in?',
    'Interested Type of Books'
]]

# Assign category codes
for i in categorical_cols:
    data[i] = data[i].astype('category')
    data[i] = data[i].cat.codes

# Create reference dictionaries for embeddings
def create_embedding_dict(column):
    unique_names = list(categorical_cols[column].unique())
    unique_codes = list(data[column].unique())
    return dict(zip(unique_names, unique_codes))

certificates_references = create_embedding_dict('certifications')
workshop_references = create_embedding_dict('workshops')
subjects_interest_references = create_embedding_dict('Interested subjects')
career_interest_references = create_embedding_dict('interested career area ')
company_intends_references = create_embedding_dict('Type of company want to settle in?')
book_interest_references = create_embedding_dict('Interested Type of Books')

# Function to fetch job listings
def fetch_job_listings(job_title):
    url = "https://jobs-api14.p.rapidapi.com/v2/list"
    querystring = {
        "query": job_title,
        "location": "India",
        "autoTranslateLocation": "false",
        "remoteOnly": "false",
        "employmentTypes": "fulltime;parttime;intern;contractor"
    }
    headers = {
        "x-rapidapi-key": "714f5a2539msh798d996c3243876p19c71ajsnfcd7ce481cb9",
        "x-rapidapi-host": "jobs-api14.p.rapidapi.com"
    }

    try:
        response = requests.get(url, headers=headers, params=querystring)
        job_data = response.json()
        
        # Process and format job listings
        if job_data.get('jobs'):
            job_listings = []
            for job in job_data['jobs'][:5]:  # Limit to 5 job listings
                job_listings.append([
                    job.get('title', 'N/A'),
                    job.get('company', 'N/A'),
                    job.get('location', 'N/A'),
                    job.get('salary', 'Not specified')
                ])
            return job_listings
        else:
            return [['No job listings', 'found', 'for this', 'career path']]
    
    except requests.RequestException as e:
        return [['Error', 'fetching', 'job listings', str(e)]]

# Prediction function (modified to return job suggestions)
def rfprediction(model_choice, name, logical_thinking, hackathon_attend, coding_skills, public_speaking_skills,
                 self_learning, extra_course, certificate_code, worskhop_code, read_writing_skill, memory_capability,
                 subject_interest, career_interest, company_intend, senior_elder_advise, book_interest, introvert_extro,
                 team_player, management_technical, smart_hardworker):
    # Load the selected model
    rfmodel = load_model(model_choice)
    
    # Create DataFrame 
    df = pd.DataFrame.from_dict(
        {
            "logical_thinking": [logical_thinking],
            "hackathon_attend": [hackathon_attend],
            "coding_skills": [coding_skills],
            "public_speaking_skills": [public_speaking_skills],
            "self_learning": [self_learning],
            "extra_course": [extra_course],
            "certificate": [certificate_code],
            "workshop": [worskhop_code],
            "read_writing_skills": [
                    (0 if "poor" in read_writing_skill else 1 if "medium" in read_writing_skill else 2)
                ],
            "memory_capability": [
                    (0 if "poor" in memory_capability else 1 if "medium" in memory_capability else 2)   
                ],
            "subject_interest": [subject_interest],
            "career_interest": [career_interest],
            "company_intend": [company_intend],
            "senior_elder_advise": [senior_elder_advise],
            "book_interest": [book_interest],
            "introvert_extro": [introvert_extro],
            "team_player": [team_player],
            "management_technical":[management_technical],
            "smart_hardworker": [smart_hardworker]
        }
    )
    
    # Replace string values with numeric representations
    df = df.replace({
        "certificate": certificates_references, 
        "workshop": workshop_references,
        "subject_interest": subjects_interest_references,
        "career_interest": career_interest_references,
        "company_intend": company_intends_references,
        "book_interest": book_interest_references
    })
    
    # Dummy encoding 
    userdata_list = df.values.tolist()
    
    # Management-Technical dummy encoding
    if(df["management_technical"].values == "Management"):
        userdata_list[0].extend([1])
        userdata_list[0].extend([0])
        userdata_list[0].remove('Management')
    elif(df["management_technical"].values == "Technical"):
        userdata_list[0].extend([0])
        userdata_list[0].extend([1])
        userdata_list[0].remove('Technical')
    else: 
        return "Error in Management-Technical encoding"

    # Smart-Hard worker dummy encoding
    if(df["smart_hardworker"].values == "smart worker"):
        userdata_list[0].extend([1])
        userdata_list[0].extend([0])
        userdata_list[0].remove('smart worker')
    elif(df["smart_hardworker"].values == "hard worker"):
        userdata_list[0].extend([0])
        userdata_list[0].extend([1])
        userdata_list[0].remove('hard worker')
    else: 
        return "Error in Smart-Hard worker encoding"

    # Prediction
    prediction_result_all = rfmodel.predict_proba(userdata_list)
    
    # Create result dictionary with probabilities
    result_list = {
        "Applications Developer": float(prediction_result_all[0][0]),
        "CRM Technical Developer": float(prediction_result_all[0][1]),
        "Database Developer": float(prediction_result_all[0][2]),
        "Mobile Applications Developer": float(prediction_result_all[0][3]),
        "Network Security Engineer": float(prediction_result_all[0][4]),
        "Software Developer": float(prediction_result_all[0][5]),
        "Software Engineer": float(prediction_result_all[0][6]),
        "Software Quality Assurance (QA)/ Testing": float(prediction_result_all[0][7]),
        "Systems Security Administrator": float(prediction_result_all[0][8]),
        "Technical Support": float(prediction_result_all[0][9]),
        "UX Designer": float(prediction_result_all[0][10]),
        "Web Developer": float(prediction_result_all[0][11]),
    }
    
    # Find the top predicted career
    top_career = max(result_list, key=result_list.get)
    
    # Fetch job listings for the top predicted career
    job_suggestions = fetch_job_listings(top_career)
    
    return result_list, job_suggestions

# Lists for dropdown menus
cert_list = ["app development", "distro making", "full stack", "hadoop", "information security", "machine learning", "python", "r programming", "shell programming"]
workshop_list = ["cloud computing", "data science", "database security", "game development", "hacking", "system designing", "testing", "web technologies"]
skill = ["excellent", "medium", "poor"]
subject_list = ["cloud computing", "Computer Architecture", "data engineering", "hacking", "IOT", "Management", "networks", "parallel computing", "programming", "Software Engineering"]
career_list = ["Business process analyst", "cloud computing", "developer", "security", "system developer", "testing"]
company_list = ["BPA", "Cloud Services", "Finance", "Product based", "product development", "SAaS services", "Sales and Marketing", "Service Based", "Testing and Maintainance Services", "Web Services"]
book_list = ["Action and Adventure", "Anthology", "Art", "Autobiographies", "Biographies", "Childrens", "Comics","Cookbooks","Diaries","Dictionaries","Drama","Encyclopedias","Fantasy","Guide","Health","History","Horror","Journals","Math","Mystery","Poetry","Prayer books","Religion-Spirituality","Romance","Satire","Science","Science fiction","Self help","Series","Travel","Trilogy"]
Choice_list = ["Management", "Technical"]
worker_list = ["hard worker", "smart worker"]

# Create Gradio interface 
def create_output_component():
    return [
        gr.Label(label="Career Probabilities"),
        gr.Dataframe(
            headers=["Job Title", "Company", "Location", "Salary"],
            label="Job Suggestions"
        )
    ]

demo = gr.Interface(
    fn=rfprediction, 
    inputs=[
        gr.Dropdown(["Random Forest", "Decision Tree"], label="Select Machine Learning Model"),
        gr.Textbox(placeholder="What is your name?", label="Name"),
        gr.Slider(minimum=1, maximum=9, value=3, step=1, label="Are you a logical thinking person?", info="Scale: 1 - 9"),
        gr.Slider(minimum=0, maximum=6, value=0, step=1, label="Do you attend any Hackathons?", info="Scale: 0 - 6 | 0 - if not attended any"),
        gr.Slider(minimum=1, maximum=9, value=5, step=1, label="How do you rate your coding skills?", info="Scale: 1 - 9"),
        gr.Slider(minimum=1, maximum=9, value=3, step=1, label="How do you rate your public speaking skills/confidency?", info="Scale: 1 - 9"),
        gr.Radio({"Yes", "No"}, type="index", label="Are you a self-learning person? *"),
        gr.Radio({"Yes", "No"}, type="index", label="Do you take extra courses in uni (other than IT)? *"),
        gr.Dropdown(cert_list, label="Select a certificate you took!"),
        gr.Dropdown(workshop_list, label="Select a workshop you attended!"),
        gr.Dropdown(skill, label="Select your read and writing skill"),
        gr.Dropdown(skill, label="Is your memory capability good?"),
        gr.Dropdown(subject_list, label="What subject you are interested in?"),
        gr.Dropdown(career_list, label="Which IT-Career do you have interests in?"),
        gr.Dropdown(company_list, label="Do you have any interested company that you intend to settle in?"),
        gr.Radio({"Yes", "No"}, type="index", label="Do you ever seek any advices from senior or elders? *"),
        gr.Dropdown(book_list, label="Select your interested genre of book!"),
        gr.Radio({"Yes", "No"}, type="index", label="Are you an Introvert?| No - extrovert *"),
        gr.Radio({"Yes", "No"}, type="index", label="Ever worked in a team? *"),
        gr.Dropdown(Choice_list, label="Which area do you prefer: Management or Technical?"),
        gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?")
    ],
    outputs=create_output_component(), 
    title="AI-Enhanced Career guidance System",

)

# Main execution
if __name__ == "__main__":
    demo.launch(share=True)