|
import torch |
|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
app = FastAPI() |
|
|
|
model_id = "mistralai/Mistral-7B-Instruct-v0.1" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) |
|
|
|
class ChatRequest(BaseModel): |
|
messages: list |
|
|
|
@app.post("/chat") |
|
async def chat(req: ChatRequest): |
|
prompt = "" |
|
for msg in req.messages: |
|
role = msg['role'] |
|
content = msg['content'] |
|
prompt += f"[{role.capitalize()}]: {content}\n" |
|
prompt += "[Assistant]:" |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
inputs = {key: value.to(model.device) for key, value in inputs.items()} |
|
|
|
|
|
output = model.generate(inputs['input_ids'], max_new_tokens=100) |
|
|
|
|
|
result = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
return {"response": result.replace(prompt, "").strip()} |