Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import gc
|
|
| 7 |
import logging
|
| 8 |
from typing import List, Dict, Any, Optional
|
| 9 |
|
| 10 |
-
# Konfigurasi logging
|
| 11 |
logging.basicConfig(
|
| 12 |
level=logging.INFO,
|
| 13 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
@@ -16,47 +15,38 @@ logger = logging.getLogger(__name__)
|
|
| 16 |
|
| 17 |
app = FastAPI(title="TinyLlama API", description="API untuk model TinyLlama-1.1B-Chat")
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
model_dir = "model_cache" # Direktori untuk menyimpan model
|
| 22 |
|
| 23 |
-
# Variabel global untuk menyimpan model dan tokenizer
|
| 24 |
tokenizer = None
|
| 25 |
model = None
|
| 26 |
is_loading = False
|
| 27 |
|
| 28 |
def load_model():
|
| 29 |
-
"""Fungsi untuk memuat atau mengunduh model saat dibutuhkan"""
|
| 30 |
global tokenizer, model, is_loading
|
| 31 |
|
| 32 |
-
# Hindari loading bersamaan
|
| 33 |
if is_loading:
|
| 34 |
logger.info("Model sedang dimuat oleh proses lain")
|
| 35 |
return
|
| 36 |
|
| 37 |
-
# Cek apakah model telah dimuat
|
| 38 |
if tokenizer is None or model is None:
|
| 39 |
try:
|
| 40 |
is_loading = True
|
| 41 |
logger.info(f"Memuat model {model_id}...")
|
| 42 |
|
| 43 |
-
# Buat direktori cache jika belum ada
|
| 44 |
os.makedirs(model_dir, exist_ok=True)
|
| 45 |
|
| 46 |
-
# Bersihkan memori jika ada model sebelumnya
|
| 47 |
if model is not None:
|
| 48 |
del model
|
| 49 |
torch.cuda.empty_cache()
|
| 50 |
gc.collect()
|
| 51 |
|
| 52 |
-
# Muat tokenizer dengan cache
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 54 |
model_id,
|
| 55 |
cache_dir=model_dir,
|
| 56 |
use_fast=True,
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# Muat model dengan cache dan pengaturan hemat memori
|
| 60 |
device_map = "auto" if torch.cuda.is_available() else None
|
| 61 |
|
| 62 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -101,29 +91,22 @@ async def chat(req: ChatRequest):
|
|
| 101 |
raise HTTPException(status_code=500, detail="Gagal memuat model")
|
| 102 |
|
| 103 |
try:
|
| 104 |
-
# Format untuk Phi-1.5
|
| 105 |
-
# Phi dapat menggunakan format sederhana dengan <|user|>, <|assistant|>
|
| 106 |
system_content = ""
|
| 107 |
|
| 108 |
-
# Cari system prompt jika ada
|
| 109 |
for msg in req.messages:
|
| 110 |
if msg.role.lower() == "system":
|
| 111 |
system_content = msg.content
|
| 112 |
break
|
| 113 |
|
| 114 |
-
# Gabungkan pesan dalam format yang sesuai untuk Phi
|
| 115 |
messages_text = []
|
| 116 |
|
| 117 |
-
# Tambahkan system prompt jika ada
|
| 118 |
if system_content:
|
| 119 |
messages_text.append(f"<|system|>\n{system_content}")
|
| 120 |
|
| 121 |
-
# Tambahkan pesan user dan assistant
|
| 122 |
for msg in req.messages:
|
| 123 |
role = msg.role.lower()
|
| 124 |
content = msg.content
|
| 125 |
|
| 126 |
-
# Lewati system prompt karena sudah diproses
|
| 127 |
if role == "system":
|
| 128 |
continue
|
| 129 |
|
|
@@ -132,64 +115,50 @@ async def chat(req: ChatRequest):
|
|
| 132 |
elif role == "assistant":
|
| 133 |
messages_text.append(f"<|assistant|>\n{content}")
|
| 134 |
|
| 135 |
-
# Tambahkan token untuk memulai respons AI
|
| 136 |
messages_text.append("<|assistant|>")
|
| 137 |
|
| 138 |
-
# Gabungkan semua dengan newline
|
| 139 |
prompt = "\n".join(messages_text)
|
| 140 |
|
| 141 |
-
# Encode the prompt
|
| 142 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 143 |
input_length = len(inputs.input_ids[0])
|
| 144 |
|
| 145 |
-
# Pindahkan input ke device yang sama dengan model
|
| 146 |
if hasattr(model, 'device'):
|
| 147 |
inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
| 148 |
|
| 149 |
-
# Set parameter generasi yang lebih sesuai
|
| 150 |
generation_config = {
|
| 151 |
'max_new_tokens': req.max_tokens,
|
| 152 |
-
'temperature':
|
| 153 |
-
'top_p':
|
| 154 |
-
'do_sample': False,
|
| 155 |
'pad_token_id': tokenizer.eos_token_id
|
| 156 |
}
|
| 157 |
|
| 158 |
-
# Generate a response
|
| 159 |
with torch.no_grad():
|
| 160 |
output = model.generate(
|
| 161 |
inputs['input_ids'],
|
| 162 |
**generation_config
|
| 163 |
)
|
| 164 |
|
| 165 |
-
# Decode the output
|
| 166 |
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 167 |
|
| 168 |
-
# Cari respons setelah token <|assistant|> terakhir
|
| 169 |
assistants = result.split("<|assistant|>")
|
| 170 |
if len(assistants) > 1:
|
| 171 |
response = assistants[-1].strip()
|
| 172 |
else:
|
| 173 |
-
# Jika tidak ada token <|assistant|>
|
| 174 |
-
# Ambil respons setelah prompt terakhir
|
| 175 |
user_tokens = result.split("<|user|>")
|
| 176 |
if len(user_tokens) > 1:
|
| 177 |
last_part = user_tokens[-1]
|
| 178 |
if "\n" in last_part:
|
| 179 |
-
# Ambil teks setelah baris pertama (yang berisi prompt user)
|
| 180 |
response = "\n".join(last_part.split("\n")[1:]).strip()
|
| 181 |
else:
|
| 182 |
response = last_part.strip()
|
| 183 |
else:
|
| 184 |
-
# Fallback ke metode sederhana
|
| 185 |
prompt_length = len(tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True))
|
| 186 |
response = result[prompt_length:].strip()
|
| 187 |
|
| 188 |
-
# Jika respons kosong, berikan pesan default
|
| 189 |
if not response:
|
| 190 |
response = "Maaf, tidak dapat menghasilkan respons yang valid."
|
| 191 |
|
| 192 |
-
# Hitung penggunaan token
|
| 193 |
output_length = len(output[0])
|
| 194 |
new_tokens = output_length - input_length
|
| 195 |
|
|
@@ -226,7 +195,6 @@ async def force_load_model(background_tasks: BackgroundTasks):
|
|
| 226 |
if model is not None:
|
| 227 |
return {"status": "already_loaded", "message": f"Model {model_id} sudah dimuat"}
|
| 228 |
|
| 229 |
-
# Lakukan loading di background untuk tidak memblokir API
|
| 230 |
background_tasks.add_task(load_model)
|
| 231 |
return {"status": "loading_started", "message": f"Proses memuat model {model_id} telah dimulai"}
|
| 232 |
|
|
@@ -247,9 +215,7 @@ async def root():
|
|
| 247 |
}
|
| 248 |
|
| 249 |
|
| 250 |
-
# Untuk menjalankan dengan uvicorn
|
| 251 |
if __name__ == "__main__":
|
| 252 |
import uvicorn
|
| 253 |
-
# Mulai server API
|
| 254 |
logger.info(f"Memulai server API untuk model {model_id}")
|
| 255 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 7 |
import logging
|
| 8 |
from typing import List, Dict, Any, Optional
|
| 9 |
|
|
|
|
| 10 |
logging.basicConfig(
|
| 11 |
level=logging.INFO,
|
| 12 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
| 15 |
|
| 16 |
app = FastAPI(title="TinyLlama API", description="API untuk model TinyLlama-1.1B-Chat")
|
| 17 |
|
| 18 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 19 |
+
model_dir = "model_cache"
|
|
|
|
| 20 |
|
|
|
|
| 21 |
tokenizer = None
|
| 22 |
model = None
|
| 23 |
is_loading = False
|
| 24 |
|
| 25 |
def load_model():
|
|
|
|
| 26 |
global tokenizer, model, is_loading
|
| 27 |
|
|
|
|
| 28 |
if is_loading:
|
| 29 |
logger.info("Model sedang dimuat oleh proses lain")
|
| 30 |
return
|
| 31 |
|
|
|
|
| 32 |
if tokenizer is None or model is None:
|
| 33 |
try:
|
| 34 |
is_loading = True
|
| 35 |
logger.info(f"Memuat model {model_id}...")
|
| 36 |
|
|
|
|
| 37 |
os.makedirs(model_dir, exist_ok=True)
|
| 38 |
|
|
|
|
| 39 |
if model is not None:
|
| 40 |
del model
|
| 41 |
torch.cuda.empty_cache()
|
| 42 |
gc.collect()
|
| 43 |
|
|
|
|
| 44 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 45 |
model_id,
|
| 46 |
cache_dir=model_dir,
|
| 47 |
use_fast=True,
|
| 48 |
)
|
| 49 |
|
|
|
|
| 50 |
device_map = "auto" if torch.cuda.is_available() else None
|
| 51 |
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 91 |
raise HTTPException(status_code=500, detail="Gagal memuat model")
|
| 92 |
|
| 93 |
try:
|
|
|
|
|
|
|
| 94 |
system_content = ""
|
| 95 |
|
|
|
|
| 96 |
for msg in req.messages:
|
| 97 |
if msg.role.lower() == "system":
|
| 98 |
system_content = msg.content
|
| 99 |
break
|
| 100 |
|
|
|
|
| 101 |
messages_text = []
|
| 102 |
|
|
|
|
| 103 |
if system_content:
|
| 104 |
messages_text.append(f"<|system|>\n{system_content}")
|
| 105 |
|
|
|
|
| 106 |
for msg in req.messages:
|
| 107 |
role = msg.role.lower()
|
| 108 |
content = msg.content
|
| 109 |
|
|
|
|
| 110 |
if role == "system":
|
| 111 |
continue
|
| 112 |
|
|
|
|
| 115 |
elif role == "assistant":
|
| 116 |
messages_text.append(f"<|assistant|>\n{content}")
|
| 117 |
|
|
|
|
| 118 |
messages_text.append("<|assistant|>")
|
| 119 |
|
|
|
|
| 120 |
prompt = "\n".join(messages_text)
|
| 121 |
|
|
|
|
| 122 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 123 |
input_length = len(inputs.input_ids[0])
|
| 124 |
|
|
|
|
| 125 |
if hasattr(model, 'device'):
|
| 126 |
inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
| 127 |
|
|
|
|
| 128 |
generation_config = {
|
| 129 |
'max_new_tokens': req.max_tokens,
|
| 130 |
+
'temperature': req.temperature,
|
| 131 |
+
'top_p': req.top_p,
|
| 132 |
+
'do_sample': True if req.temperature > 0 else False,
|
| 133 |
'pad_token_id': tokenizer.eos_token_id
|
| 134 |
}
|
| 135 |
|
|
|
|
| 136 |
with torch.no_grad():
|
| 137 |
output = model.generate(
|
| 138 |
inputs['input_ids'],
|
| 139 |
**generation_config
|
| 140 |
)
|
| 141 |
|
|
|
|
| 142 |
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 143 |
|
|
|
|
| 144 |
assistants = result.split("<|assistant|>")
|
| 145 |
if len(assistants) > 1:
|
| 146 |
response = assistants[-1].strip()
|
| 147 |
else:
|
|
|
|
|
|
|
| 148 |
user_tokens = result.split("<|user|>")
|
| 149 |
if len(user_tokens) > 1:
|
| 150 |
last_part = user_tokens[-1]
|
| 151 |
if "\n" in last_part:
|
|
|
|
| 152 |
response = "\n".join(last_part.split("\n")[1:]).strip()
|
| 153 |
else:
|
| 154 |
response = last_part.strip()
|
| 155 |
else:
|
|
|
|
| 156 |
prompt_length = len(tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True))
|
| 157 |
response = result[prompt_length:].strip()
|
| 158 |
|
|
|
|
| 159 |
if not response:
|
| 160 |
response = "Maaf, tidak dapat menghasilkan respons yang valid."
|
| 161 |
|
|
|
|
| 162 |
output_length = len(output[0])
|
| 163 |
new_tokens = output_length - input_length
|
| 164 |
|
|
|
|
| 195 |
if model is not None:
|
| 196 |
return {"status": "already_loaded", "message": f"Model {model_id} sudah dimuat"}
|
| 197 |
|
|
|
|
| 198 |
background_tasks.add_task(load_model)
|
| 199 |
return {"status": "loading_started", "message": f"Proses memuat model {model_id} telah dimulai"}
|
| 200 |
|
|
|
|
| 215 |
}
|
| 216 |
|
| 217 |
|
|
|
|
| 218 |
if __name__ == "__main__":
|
| 219 |
import uvicorn
|
|
|
|
| 220 |
logger.info(f"Memulai server API untuk model {model_id}")
|
| 221 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|