Sontranwakumo
feat: update data
68b63d6
raw
history blame
14 kB
import json
import io
from string import Template
from fastapi import Depends, UploadFile
import asyncio
from PIL import Image
import sqlite3
from app.api.dto.kg_query import KGQueryRequest, QueryContext, PredictedLabel
from app.core.dependencies import get_all_models
from app.core.type import Node
from app.models.crop_clip import EfficientNetModule
from app.models.gemini_caller import GeminiGenerator
from app.models.knowledge_graph import KnowledgeGraphUtils
from app.utils.constant import EXTRACTED_NODES
from app.utils.data_mapping import VECTOR_EMBEDDINGS_DB_PATH, DataMapping
from app.utils.extract_entity import clean_text, extract_entities
from app.utils.prompt import EXTRACT_NODES_FROM_IMAGE_PROMPT, EXTRACT_NODES_FROM_TEXT_PROMPT, GET_STATEMENT_FROM_DISEASE_KG, GET_STATEMENT_FROM_ENV_FACTORS_KG
class CustomJSONEncoder(json.JSONEncoder):
def default(self, obj):
if hasattr(obj, 'model_dump'): # Pydantic v2 BaseModel
return obj.model_dump()
elif hasattr(obj, 'dict'): # Pydantic v1 BaseModel
return obj.dict()
elif isinstance(obj, (list, tuple)):
return [self.default(item) if hasattr(item, 'model_dump') or hasattr(item, 'dict') else item for item in obj]
return super().default(obj)
def convert_to_json_serializable(obj):
"""Convert objects containing Node instances to JSON serializable format"""
try:
if hasattr(obj, 'model_dump'): # Pydantic v2 BaseModel
return obj.model_dump()
elif hasattr(obj, 'dict'): # Pydantic v1 BaseModel
return obj.dict()
elif isinstance(obj, list):
return [convert_to_json_serializable(item) for item in obj]
elif isinstance(obj, dict):
return {key: convert_to_json_serializable(value) for key, value in obj.items()}
elif isinstance(obj, tuple):
return [convert_to_json_serializable(item) for item in obj]
elif obj is None:
return None
else:
# Try to convert basic types
try:
json.dumps(obj) # Test if it's JSON serializable
return obj
except (TypeError, ValueError):
# If it's not serializable, convert to string as fallback
print(f"Warning: Converting non-serializable object {type(obj)} to string: {obj}")
return str(obj)
except Exception as e:
print(f"Error in convert_to_json_serializable for object {type(obj)}: {e}")
return str(obj)
extracted_nodes = [
Node(
id=node['id'],
label=node['label'],
name=node['name'],
properties={'description': node['description']},
score=None
) for node in EXTRACTED_NODES
]
class PredictService:
def __init__(self, models):
self.models = models
async def predict_image(self, image: UploadFile):
efficientnet_model: EfficientNetModule = self.models["efficientnet_model"]
image_content = image.file.read()
pil_image = Image.open(Image.io.BytesIO(image_content)).convert('RGB')
return efficientnet_model.predict_image(pil_image)
async def retrieve_kg(self, request: KGQueryRequest):
try:
kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
if not request.context:
request.context = QueryContext()
if request.crop_id:
request.context.crop_id = request.crop_id
if request.additional_info:
additional_nodes = await self.__get_nodes_from_additional_info_async(
request.additional_info, self.models["data_mapper"]
)
if request.context.nodes is None:
request.context.nodes = []
request.context.nodes = request.context.nodes + additional_nodes
for node in request.context.nodes:
if node.score is None:
node.score = 0.9
env_task = asyncio.create_task(
kg.get_disease_from_env_factors(request.context.crop_id, request.context.nodes)
)
symptom_task = asyncio.create_task(
kg.get_disease_from_symptoms(request.context.crop_id, request.context.nodes)
)
env_results, symptom_results = await asyncio.gather(env_task, symptom_task)
context = request.context
context.nodes.extend([env_result["disease"] for env_result in env_results])
context.nodes.extend([symptom_result["disease"] for symptom_result in symptom_results])
print(context.nodes)
context.nodes.sort(key=lambda x: x.score, reverse=True)
# Tính toán final_labels bằng trung bình có trọng số
if context.predicted_labels:
print("Got predicted labels")
context.final_labels = self.calculate_final_labels(
context.predicted_labels,
env_results,
symptom_results,
context.crop_id
)
return {
"context": context,
"env_results": env_results,
"symptom_results": symptom_results
}
except Exception as e:
print(e)
raise e
def calculate_final_labels(self, predicted_labels, env_result, symptom_result, crop_id):
"""
Tính toán final_labels bằng trung bình có trọng số từ:
- predicted_labels: Kết quả từ CLIP model (weight: 0.4)
- env_result: Kết quả từ environmental factors (weight: 0.3)
- symptom_result: Kết quả từ symptoms (weight: 0.3)
"""
# Weight
ENV_WEIGHT = 0.3
SYMPTOM_WEIGHT = 0.2
# Dictionary để tích lũy scores cho mỗi disease/crop combination
label_scores = {}
# 1. Điểm từ CLIP model
for label in predicted_labels:
key = f"{label.crop_id}_{label.label}"
print(f"CLIP key: {key} score: {label.confidence}")
if key not in label_scores:
label_scores[key] = {
"crop_id": label.crop_id,
"label": label.label,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += label.confidence
label_scores[key]["count"] += 1
# 2. Điểm từ symptoms
for symptom in symptom_result:
disease = symptom.get("disease")
if disease and hasattr(disease, 'score'):
key = f"{crop_id}_{disease.id}"
print(f"Symptom key: {key} score: {disease.score}")
if key not in label_scores:
label_scores[key] = {
"crop_id": crop_id,
"label": disease.id,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += disease.score * SYMPTOM_WEIGHT * (1-label_scores[key]["total_score"])
# 3. Điểm từ environmental factors
for env in env_result:
disease = env.get("disease")
if disease and hasattr(disease, 'score'):
# Giả sử disease có thông tin về crop và label
key = f"{crop_id}_{disease.id}"
print(f"Env key: {key} score: {disease.score}")
if key not in label_scores:
label_scores[key] = {
"crop_id": crop_id,
"label": disease.id,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += disease.score * ENV_WEIGHT * (1-label_scores[key]["total_score"])
# Tạo final_labels từ kết quả tính toán
final_labels = []
for key, data in label_scores.items():
final_confidence = data["total_score"]
final_labels.append(PredictedLabel(
crop_id=data["crop_id"],
label=data["label"],
confidence=min(final_confidence, 1.0) # Đảm bảo không vượt quá 1.0
))
# Sắp xếp theo confidence giảm dần và lọc ngưỡng
final_labels.sort(key=lambda x: x.confidence, reverse=True)
print(final_labels)
return [label for label in final_labels if label.confidence > 0.1] # Lọc ngưỡng thấp
# TODO:
async def get_nodes_from_image(self, image: UploadFile):
try:
gemini = GeminiGenerator()
symptoms = self.models["data_mapper"].get_embedding_by_label("Symptom")
symptom_list = [f"- id:{node.id} - name:{node.name}" for node in symptoms]
symptom_list = "\n".join(symptom_list)
prompt = Template(EXTRACT_NODES_FROM_IMAGE_PROMPT).substitute(symptom_list=symptom_list)
image_content = image.file.read()
pil_image = Image.open(io.BytesIO(image_content)).convert('RGB')
ids = gemini.generate(prompt, image=pil_image)
ids = (json.loads(clean_text(ids.text)))["ids"]
print(ids)
nodes = []
for id in ids:
node = next((symptom for symptom in symptoms if symptom.id == id), None)
nodes.append(node)
return nodes
except Exception as e:
print(f"Error while extract knowledge entities from image: {str(e)}")
return []
async def __get_nodes_from_additional_info_async(self, additional_info: str, data_mapper: DataMapping):
entities = extract_entities(additional_info)
if not entities:
return []
tasks = []
for entity in entities:
task = asyncio.create_task(
data_mapper.get_top_result_by_text_async(entity.name, 3),
name=f"query_entity_{entity.name}"
)
tasks.append(task)
results = await asyncio.gather(*tasks, return_exceptions=True)
top_results: list[Node] = []
for i, result in enumerate(results):
if isinstance(result, Exception):
continue
for node in result:
top_results.append(node)
return top_results
def get_embedding_by_id_threadsafe(self, id):
# Mỗi thread tạo connection riêng
conn = sqlite3.connect(VECTOR_EMBEDDINGS_DB_PATH, check_same_thread=False)
cursor = conn.cursor()
try:
cursor.execute("SELECT * FROM embeddings WHERE e_index = ?", (id,))
result = cursor.fetchone()
return result
finally:
cursor.close() # Đóng connection sau khi dùng xong
conn.close()
async def retrieve_kg_text(self, request: KGQueryRequest):
try:
nodes = await self.get_nodes_from_text(request.additional_info)
kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
env_task = asyncio.create_task(
kg.get_disease_from_env_factors(request.crop_id, nodes)
)
symptom_task = asyncio.create_task(
kg.get_disease_from_symptoms(request.crop_id, nodes)
)
env_results, symptom_results = await asyncio.gather(env_task, symptom_task)
best_label = request.context.predicted_labels[0].label
best_env_result = next((result for result in env_results if result["disease"].id == best_label), None)
best_env_result_str = str(best_env_result)
best_symptom_result = next((result for result in symptom_results if result["disease"].id == best_label), None)
best_symptom_result_str = str(best_symptom_result)
prompt1 = None
prompt2 = None
result1 = None
result2 = None
if best_env_result:
prompt1 = Template(GET_STATEMENT_FROM_ENV_FACTORS_KG).substitute(context=best_env_result_str)
if best_symptom_result:
prompt2 = Template(GET_STATEMENT_FROM_DISEASE_KG).substitute(context=best_symptom_result_str)
gemini = GeminiGenerator()
print(prompt1)
if prompt1:
result1 = gemini.generate(prompt1)
if prompt2:
result2 = gemini.generate(prompt2)
return {
"env_results": env_results,
"symptom_results": symptom_results,
"env_statement": result1.text if result1 else None,
"symptom_statement": result2.text if result2 else None
}
except Exception as e:
print(e)
raise e
async def get_nodes_from_text(self, text: str):
try:
gemini = GeminiGenerator()
node_list = [f" + id:{node.id}, name:{node.name}, description:{node.properties.get('description', '')}" for node in extracted_nodes]
prompt = Template(EXTRACT_NODES_FROM_TEXT_PROMPT).substitute(text=text, node_list=node_list)
ids = gemini.generate(prompt)
print(ids)
ids = (json.loads(clean_text(ids.text)))["ids"]
print(ids)
nodes = [next((node for node in extracted_nodes if node.id == id), None) for id in ids]
return nodes
except Exception as e:
print(e)
# async def get_all_nodes(self):
# try:
# kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
# list_nodes = await kg.get_all_nodes()
# return [dict(node[0], **{"label": "Symptom"}) for node in list_nodes]
# except Exception as e:
# print(e)
# return []
def get_predict_service(models = Depends(get_all_models)):
return PredictService(models)