import os import re import io import json import time import base64 import asyncio from typing import AsyncGenerator, List import numpy as np from fastapi import FastAPI, Query from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, JSONResponse from kokoro_onnx import Kokoro # pip install kokoro-onnx APP_NAME = "kokoro-onnx-fastapi-sse" SAMPLE_RATE = 24000 # Kokoro output CHANNELS = 1 CHUNK_SAMPLES = 2400 # 100 ms MODEL_PATH = os.getenv("KOKORO_MODEL", "models/kokoro-v1.0.int8.onnx") VOICES_PATH = os.getenv("KOKORO_VOICES", "models/voices-v1.0.bin") app = FastAPI(title=APP_NAME) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"] ) kokoro = None _model_lock = asyncio.Lock() def split_text(text: str, max_len: int = 220) -> List[str]: # Split on sentences, then fold long pieces parts = re.split(r"(?<=[\.\!\?ред])\s+", text.strip()) chunks: List[str] = [] for p in parts: p = p.strip() while len(p) > max_len: cut = p.rfind(" ", 0, max_len) if cut == -1: cut = max_len chunks.append(p[:cut].strip()) p = p[cut:].strip() if p: chunks.append(p) return [c for c in chunks if c] def floats_to_s16le(samples: np.ndarray) -> np.ndarray: x = np.clip(samples, -1.0, 1.0) return (x * 32767.0).astype(np.int16) async def sse_generator(text: str, voice: str, speed: float, lang: str) -> AsyncGenerator[bytes, None]: # Yields SSE messages with base64 PCM16 frames (100ms per chunk). seq = 0 total_samples = 0 try: # Warmup ping yield b": keep-alive\n\n" for sentence in split_text(text): async with _model_lock: samples, sr = kokoro.create(sentence, voice=voice, speed=speed, lang=lang) assert sr == SAMPLE_RATE, f"Expected {SAMPLE_RATE}, got {sr}" pcm16 = floats_to_s16le(np.asarray(samples)) for i in range(0, len(pcm16), CHUNK_SAMPLES): frame = pcm16[i:i+CHUNK_SAMPLES] total_samples += len(frame) payload = { "seq": seq, "sr": SAMPLE_RATE, "ch": CHANNELS, "format": "s16le", "pcm16": base64.b64encode(frame.tobytes()).decode("ascii"), } msg = f"data: {json.dumps(payload, separators=(',',':'))}\n\n" yield msg.encode("utf-8") seq += 1 await asyncio.sleep(0) # give control back to loop # Done event done = {"total_chunks": seq, "total_samples": total_samples} yield f"event: done\ndata: {json.dumps(done)}\n\n".encode("utf-8") except asyncio.CancelledError: # Client disconnected return @app.on_event("startup") async def _load_model(): global kokoro kokoro = Kokoro(MODEL_PATH, VOICES_PATH) @app.get("/healthz") async def healthz(): return {"status": "ok", "model": os.path.basename(MODEL_PATH)} @app.get("/v1/voices") async def list_voices(): try: import numpy as _np with _np.load(VOICES_PATH) as z: names = sorted(list(z.files)) return {"voices": names} except Exception: fallback = [ "af", "af_bella", "af_nicole", "af_sarah", "af_sky", "am_adam", "am_michael", "bf_emma", "bf_isabella", "bm_george", "bm_lewis", ] return {"voices": fallback, "note": "fallback list; voices file not parsed"} @app.get("/v1/tts.sse") async def tts_sse( text: str = Query(..., description="Text to synthesize"), voice: str = Query("af_sarah"), speed: float = Query(1.0, ge=0.5, le=1.5), lang: str = Query("en-us"), ): headers = { "Cache-Control": "no-cache", "Connection": "keep-alive", "X-Accel-Buffering": "no", # for nginx } return StreamingResponse( sse_generator(text, voice, speed, lang), media_type="text/event-stream", headers=headers, )