Spaces:
Runtime error
Runtime error
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import io | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from nnsight import LanguageModel | |
from typing import List | |
import pandas as pd | |
from adjustText import adjust_text | |
# Set up the API key for nnsight | |
from nnsight import CONFIG | |
import os | |
api_key = os.getenv('NNSIGHT_API_KEY') | |
CONFIG.set_default_api_key(api_key) | |
access_token = os.environ['HUGGING_FACE_HUB_TOKEN'] | |
# Model options | |
MODEL_OPTIONS = { | |
"Llama3.1-8B": "meta-llama/Meta-Llama-3.1-8B", | |
"Llama3.1-70B": "meta-llama/Meta-Llama-3.1-70B", | |
} | |
#placeholder for reset | |
prompts_with_probs = pd.DataFrame( | |
{ | |
"prompt": [''], | |
"layer": [0], | |
"results": [''], | |
"probs": [0], | |
"expected": [''], | |
}) | |
prompts_with_ranks = pd.DataFrame( | |
{ | |
"prompt": [''], | |
"layer": [0], | |
"results": [''], | |
"ranks": [0], | |
"expected": [''], | |
}) | |
def run_lens(model,PROMPT): | |
logits_lens_token_result_by_layer = [] | |
logits_lens_probs_by_layer = [] | |
logits_lens_ranks_by_layer = [] | |
input_ids = model.tokenizer.encode(PROMPT) | |
with model.trace(input_ids, remote=True) as runner: | |
for layer_ix,layer in enumerate(model.model.layers): | |
hidden_state = layer.output[0][0] | |
logits_lens_normed_last_token = model.model.norm(hidden_state) | |
logits_lens_token_distribution = model.lm_head(logits_lens_normed_last_token) | |
logits_lens_last_token_logits = logits_lens_token_distribution[-1:] | |
logits_lens_probs = F.softmax(logits_lens_last_token_logits, dim=1).save() | |
logits_lens_probs_by_layer.append(logits_lens_probs) | |
logits_lens_next_token = torch.argmax(logits_lens_probs, dim=1).save() | |
logits_lens_token_result_by_layer.append(logits_lens_next_token) | |
tokens_out = model.lm_head.output.argmax(dim=-1).save() | |
expected_token = tokens_out[0][-1].save() | |
# logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().numpy() for probs in logits_lens_probs_by_layer]) | |
logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().to(torch.float32).numpy() for probs in logits_lens_probs_by_layer]) | |
#get the rank of the expected token from each layer's distribution | |
for layer_probs in logits_lens_probs_by_layer: | |
# Sort the probabilities in descending order and find the rank of the expected token | |
sorted_probs, sorted_indices = torch.sort(layer_probs, descending=True) | |
# Find the rank of the expected token (1-based rank) | |
expected_token_rank = (sorted_indices == expected_token).nonzero(as_tuple=True)[1].item() + 1 | |
logits_lens_ranks_by_layer.append(expected_token_rank) | |
actual_output = model.tokenizer.decode(expected_token.item()) | |
logits_lens_results = [model.tokenizer.decode(next_token.item()) for next_token in logits_lens_token_result_by_layer] | |
return logits_lens_results, logits_lens_all_probs, actual_output,logits_lens_ranks_by_layer | |
def process_file(prompts_data,file_path): | |
"""Read uploaded file and return list of prompts.""" | |
prompts = [] | |
if file_path is None: | |
return prompts | |
if file_path.endswith('.csv'): | |
# Process CSV file | |
df = pd.read_csv(file_path) | |
if 'Prompt' in df.columns: | |
prompts = df[['Prompt']].dropna().values.tolist() | |
# Read the file as text and split into lines (one prompt per line) | |
else: | |
with open(file_path, 'r') as file: | |
prompts = [[line] for line in file.read().splitlines()] | |
for prompt in prompts_data: | |
if prompt==['']: | |
continue | |
else: | |
prompts.append(prompt) | |
return prompts | |
def plot_prob(prompts_with_probs): | |
plt.figure(figsize=(10, 6)) | |
texts = [] # List to hold text annotations for adjustment | |
# Iterate over each prompt and plot its probabilities | |
for prompt in prompts_with_probs['prompt'].unique(): | |
# Filter the DataFrame for the current prompt | |
prompt_data = prompts_with_probs[prompts_with_probs['prompt'] == prompt] | |
label = f"{prompt}({prompt_data['expected'].iloc[0]})" | |
# Plot probabilities for this prompt | |
plt.plot(prompt_data['layer'], prompt_data['probs'], marker='x', label=label) | |
# Annotate each point with the corresponding result | |
for layer, prob, result in zip(prompt_data['layer'], prompt_data['probs'], prompt_data['results']): | |
text = plt.text(layer, prob, result, fontsize=8) | |
texts.append(text) # Add text to the list | |
# Add labels and title | |
plt.xlabel('Layer Number') | |
plt.ylabel('Probability') | |
plt.title('Probability of most-likely output token') | |
plt.grid(True) | |
plt.xlim(0,max(prompts_with_probs['layer'])) | |
plt.ylim(0.0, 1.0) | |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1) | |
# Adjust text to prevent overlap | |
adjust_text(texts, only_move={'points': 'xy', 'texts': 'xy'}, | |
arrowprops=dict(arrowstyle="->", color='r', lw=0.5)) | |
# Save the plot to a buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels | |
buf.seek(0) | |
img = Image.open(buf) | |
plt.close() # Close the figure to free memory | |
return img | |
def plot_rank(prompts_with_ranks): | |
plt.figure(figsize=(10, 6)) | |
texts = [] # List to hold text annotations for adjustment | |
# Iterate over each prompt and plot its ranks | |
for prompt in prompts_with_ranks['prompt'].unique(): | |
# Filter the DataFrame for the current prompt | |
prompt_data = prompts_with_ranks[prompts_with_ranks['prompt'] == prompt] | |
label = f"{prompt}({prompt_data['expected'].iloc[0]})" | |
# Plot ranks for this prompt | |
plt.plot(prompt_data['layer'], prompt_data['ranks'], marker='x', label=label) | |
# Annotate each point with the corresponding result | |
for layer, rank, result in zip(prompt_data['layer'], prompt_data['ranks'], prompt_data['results']): | |
text = plt.text(layer, rank, result, ha='right', va='bottom', fontsize=8) | |
texts.append(text) # Add text to the list | |
# Add labels and title | |
plt.xlabel('Layer Number') | |
plt.ylabel('Rank') | |
plt.title('Rank of most-likely output token') | |
plt.grid(True) | |
plt.xlim(0,max(prompts_with_ranks['layer'])) | |
plt.ylim(bottom=0) # Adjust if needed, depending on your rank values | |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1) | |
# Adjust text to prevent overlap | |
adjust_text(texts,only_move={'points': 'xy', 'texts': 'xy'}, | |
arrowprops=dict(arrowstyle="->", color='r', lw=0.5)) | |
# Save the plot to a buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels | |
buf.seek(0) | |
img = Image.open(buf) | |
plt.close() # Close the figure to free memory | |
return img | |
def submit_prompts(model_name, prompts_data): | |
llama = LanguageModel(MODEL_OPTIONS[model_name]) | |
# Initialize lists to accumulate results | |
all_prompts = [] | |
all_results = [] | |
all_probs = [] | |
all_expected = [] | |
all_layers = [] | |
all_ranks = [] | |
# Iterate over each prompt | |
for prompt in prompts_data: | |
# If a prompt is an empty string, skip it | |
prompt = prompt[0] | |
if not prompt: | |
continue | |
# Run the lens model on the prompt | |
lens_output = run_lens(llama, prompt) | |
# Accumulate results for each layer | |
for layer_idx in range(len(lens_output[1])): | |
all_prompts.append(prompt) | |
all_results.append(lens_output[0][layer_idx]) | |
all_probs.append(float(lens_output[1][layer_idx])) | |
all_expected.append(lens_output[2]) | |
all_layers.append(int(layer_idx)) | |
all_ranks.append(int(lens_output[3][layer_idx])) | |
# Create DataFrame from accumulated results | |
prompts_with_probs = pd.DataFrame( | |
{ | |
"prompt": all_prompts, | |
"layer": all_layers, | |
"results": all_results, | |
"probs": all_probs, | |
"expected": all_expected, | |
}) | |
prompts_with_ranks = pd.DataFrame( | |
{ | |
"prompt": all_prompts, | |
"layer": all_layers, | |
"results": all_results, | |
"ranks": all_ranks, | |
"expected": all_expected, | |
}) | |
return plot_prob(prompts_with_probs), plot_rank(prompts_with_ranks) | |
def clear_all(prompts): | |
prompts=[['']] | |
# prompt_file=gr.File(type="filepath", label="Upload a File with Prompts") | |
prompt_file = None | |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True) | |
return prompts_data,prompt_file,plot_prob(prompts_with_probs),plot_rank(prompts_with_ranks) | |
def gradio_interface(): | |
with gr.Blocks(theme="gradio/monochrome") as demo: | |
prompts = [['The Eiffel Tower is located in the city of'],['Vatican is located in the city of']] | |
# prompts=[['']] | |
with gr.Row(): | |
with gr.Column(scale=3): | |
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model", value="Llama3.1-8B") | |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True) | |
with gr.Column(scale=1): | |
prompt_file=gr.File(type="filepath", label="Upload a File with Prompts") | |
prompt_file.upload(process_file, inputs=[prompts_data,prompt_file], outputs=[prompts_data]) | |
# Define the outputs | |
with gr.Row(): | |
clear_btn = gr.Button("Clear") | |
submit_btn = gr.Button("Submit") | |
prompt_file.upload(process_file, inputs=[prompts_data, prompt_file], outputs=[prompts_data]) | |
gr.Markdown("The most likely output token is the model's prediction at the final layer, shown in brackets in the plot legend.") | |
# Create a Markdown component for the description | |
with gr.Row(): | |
gr.Markdown("The graph below illustrates the probability of this most likely output token as it is decoded at each layer of the model. Each point on the graph is annotated with the decoded output corresponding to the token that has the highest probability at that particular layer.") | |
gr.Markdown("The graph below illustrates the rank of this most likely output token as it is decoded at each layer of the model. Each point on the graph is annotated with the decoded output corresponding to the token that has the lowest rank at that particular layer.") | |
prob_img, rank_img = submit_prompts(model_dropdown.value, prompts) | |
# prob_visualization.value = prob_img # Direct assignment to value | |
# rank_visualization.value = rank_img # Direct assignment to value | |
with gr.Row(): | |
prob_visualization = gr.Image(value=prob_img, type="pil",label=" ") | |
rank_visualization = gr.Image(value=rank_img, type="pil",label=" ") | |
clear_btn.click(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization]) | |
submit_btn.click(submit_prompts, inputs=[model_dropdown,prompts_data], outputs=[prob_visualization,rank_visualization])# | |
prompt_file.clear(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization]) | |
# Generate plots with sample prompts on load | |
demo.launch() | |
gradio_interface() |