Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,8 +17,13 @@ CONFIG.set_default_api_key(api_key)
|
|
17 |
|
18 |
access_token = os.environ['HUGGING_FACE_HUB_TOKEN']
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
#placeholder for reset
|
24 |
prompts_with_probs = pd.DataFrame(
|
@@ -53,7 +58,7 @@ def run_lens(model,PROMPT):
|
|
53 |
logits_lens_probs_by_layer.append(logits_lens_probs)
|
54 |
logits_lens_next_token = torch.argmax(logits_lens_probs, dim=1).save()
|
55 |
logits_lens_token_result_by_layer.append(logits_lens_next_token)
|
56 |
-
tokens_out =
|
57 |
expected_token = tokens_out[0][-1].save()
|
58 |
# logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().numpy() for probs in logits_lens_probs_by_layer])
|
59 |
logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().to(torch.float32).numpy() for probs in logits_lens_probs_by_layer])
|
@@ -65,7 +70,7 @@ def run_lens(model,PROMPT):
|
|
65 |
# Find the rank of the expected token (1-based rank)
|
66 |
expected_token_rank = (sorted_indices == expected_token).nonzero(as_tuple=True)[1].item() + 1
|
67 |
logits_lens_ranks_by_layer.append(expected_token_rank)
|
68 |
-
actual_output =
|
69 |
logits_lens_results = [model.tokenizer.decode(next_token.item()) for next_token in logits_lens_token_result_by_layer]
|
70 |
return logits_lens_results, logits_lens_all_probs, actual_output,logits_lens_ranks_by_layer
|
71 |
|
@@ -98,28 +103,35 @@ def process_file(prompts_data,file_path):
|
|
98 |
|
99 |
def plot_prob(prompts_with_probs):
|
100 |
plt.figure(figsize=(10, 6))
|
101 |
-
|
|
|
102 |
# Iterate over each prompt and plot its probabilities
|
103 |
for prompt in prompts_with_probs['prompt'].unique():
|
104 |
# Filter the DataFrame for the current prompt
|
105 |
prompt_data = prompts_with_probs[prompts_with_probs['prompt'] == prompt]
|
|
|
106 |
|
107 |
# Plot probabilities for this prompt
|
108 |
-
plt.plot(prompt_data['layer'], prompt_data['probs'], marker='x', label=
|
109 |
-
|
110 |
# Annotate each point with the corresponding result
|
111 |
for layer, prob, result in zip(prompt_data['layer'], prompt_data['probs'], prompt_data['results']):
|
112 |
-
plt.text(layer, prob, result, fontsize=8)
|
113 |
-
|
114 |
|
115 |
# Add labels and title
|
116 |
plt.xlabel('Layer Number')
|
117 |
-
plt.ylabel('Probability
|
118 |
-
plt.title('
|
119 |
plt.grid(True)
|
|
|
120 |
plt.ylim(0.0, 1.0)
|
121 |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
122 |
|
|
|
|
|
|
|
|
|
123 |
# Save the plot to a buffer
|
124 |
buf = io.BytesIO()
|
125 |
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
@@ -130,27 +142,34 @@ def plot_prob(prompts_with_probs):
|
|
130 |
|
131 |
def plot_rank(prompts_with_ranks):
|
132 |
plt.figure(figsize=(10, 6))
|
133 |
-
|
|
|
134 |
# Iterate over each prompt and plot its ranks
|
135 |
for prompt in prompts_with_ranks['prompt'].unique():
|
136 |
# Filter the DataFrame for the current prompt
|
137 |
prompt_data = prompts_with_ranks[prompts_with_ranks['prompt'] == prompt]
|
|
|
138 |
|
139 |
# Plot ranks for this prompt
|
140 |
-
plt.plot(prompt_data['layer'], prompt_data['ranks'], marker='x', label=
|
141 |
-
|
142 |
# Annotate each point with the corresponding result
|
143 |
for layer, rank, result in zip(prompt_data['layer'], prompt_data['ranks'], prompt_data['results']):
|
144 |
-
plt.text(layer, rank,result, ha='right', va='bottom', fontsize=8)
|
|
|
145 |
|
146 |
# Add labels and title
|
147 |
plt.xlabel('Layer Number')
|
148 |
-
plt.ylabel('Rank
|
149 |
-
plt.title('Rank of
|
150 |
plt.grid(True)
|
|
|
151 |
plt.ylim(bottom=0) # Adjust if needed, depending on your rank values
|
152 |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
153 |
|
|
|
|
|
|
|
154 |
|
155 |
# Save the plot to a buffer
|
156 |
buf = io.BytesIO()
|
@@ -160,77 +179,8 @@ def plot_rank(prompts_with_ranks):
|
|
160 |
plt.close() # Close the figure to free memory
|
161 |
return img
|
162 |
|
163 |
-
def
|
164 |
-
|
165 |
-
summary_stats = prompts_with_probs.groupby("prompt")["probs"].agg(
|
166 |
-
mean_prob="mean",
|
167 |
-
variance="var"
|
168 |
-
).reset_index()
|
169 |
-
|
170 |
-
# Set up the bar plot
|
171 |
-
plt.figure(figsize=(10, 6))
|
172 |
-
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_prob'],
|
173 |
-
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
|
174 |
-
capsize=5, color='skyblue')
|
175 |
-
|
176 |
-
# Add labels and title
|
177 |
-
plt.xlabel('Prompt')
|
178 |
-
plt.ylabel('Mean Probability')
|
179 |
-
plt.title('Mean Probability of Expected Token')
|
180 |
-
plt.xticks(rotation=45, ha='right')
|
181 |
-
plt.grid(axis='y')
|
182 |
-
plt.ylim(0, 1)
|
183 |
-
|
184 |
-
|
185 |
-
# Annotate the mean and variance on the bars
|
186 |
-
for bar, mean, var in zip(bars, summary_stats['mean_prob'], summary_stats['variance']):
|
187 |
-
yval = bar.get_height()
|
188 |
-
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
|
189 |
-
ha='center', va='bottom', fontsize=8, color='black')
|
190 |
-
|
191 |
-
# Save the plot to a buffer
|
192 |
-
buf = io.BytesIO()
|
193 |
-
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
194 |
-
buf.seek(0)
|
195 |
-
img = Image.open(buf)
|
196 |
-
plt.close() # Close the figure to free memory
|
197 |
-
return img
|
198 |
-
|
199 |
-
def plot_rank_mean(prompts_with_ranks):
|
200 |
-
# Calculate mean ranks and variance
|
201 |
-
summary_stats = prompts_with_ranks.groupby("prompt")["ranks"].agg(
|
202 |
-
mean_rank="mean",
|
203 |
-
variance="var"
|
204 |
-
).reset_index()
|
205 |
-
|
206 |
-
# Set up the bar plot
|
207 |
-
plt.figure(figsize=(10, 6))
|
208 |
-
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_rank'],
|
209 |
-
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
|
210 |
-
capsize=5, color='salmon')
|
211 |
-
|
212 |
-
# Add labels and title
|
213 |
-
plt.xlabel('Prompt')
|
214 |
-
plt.ylabel('Mean Rank')
|
215 |
-
plt.title('Mean Rank of Expected Token')
|
216 |
-
plt.xticks(rotation=45, ha='right')
|
217 |
-
plt.grid(axis='y')
|
218 |
-
|
219 |
-
# Annotate the mean and variance on the bars
|
220 |
-
for bar, mean, var in zip(bars, summary_stats['mean_rank'], summary_stats['variance']):
|
221 |
-
yval = bar.get_height()
|
222 |
-
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
|
223 |
-
ha='center', va='bottom', fontsize=8, color='black')
|
224 |
-
|
225 |
-
# Save the plot to a buffer
|
226 |
-
buf = io.BytesIO()
|
227 |
-
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
228 |
-
buf.seek(0)
|
229 |
-
img = Image.open(buf)
|
230 |
-
plt.close() # Close the figure to free memory
|
231 |
-
return img
|
232 |
-
|
233 |
-
def submit_prompts(prompts_data):
|
234 |
# Initialize lists to accumulate results
|
235 |
all_prompts = []
|
236 |
all_results = []
|
@@ -276,20 +226,23 @@ def submit_prompts(prompts_data):
|
|
276 |
"ranks": all_ranks,
|
277 |
"expected": all_expected,
|
278 |
})
|
279 |
-
return plot_prob(prompts_with_probs), plot_rank(prompts_with_ranks)
|
280 |
|
281 |
def clear_all(prompts):
|
282 |
prompts=[['']]
|
283 |
# prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
|
284 |
prompt_file = None
|
285 |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
286 |
-
return prompts_data,prompt_file,plot_prob(prompts_with_probs),plot_rank(prompts_with_ranks)
|
287 |
|
288 |
def gradio_interface():
|
289 |
with gr.Blocks(theme="gradio/monochrome") as demo:
|
290 |
-
prompts=[['']]
|
|
|
|
|
291 |
with gr.Row():
|
292 |
with gr.Column(scale=3):
|
|
|
293 |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
294 |
with gr.Column(scale=1):
|
295 |
prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
|
@@ -298,18 +251,30 @@ def gradio_interface():
|
|
298 |
with gr.Row():
|
299 |
clear_btn = gr.Button("Clear")
|
300 |
submit_btn = gr.Button("Submit")
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
with gr.Row():
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
304 |
with gr.Row():
|
305 |
-
|
306 |
-
|
307 |
|
308 |
-
clear_btn.click(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization
|
309 |
-
submit_btn.click(submit_prompts, inputs=[prompts_data], outputs=[prob_visualization,rank_visualization
|
310 |
-
prompt_file.clear(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization
|
|
|
|
|
311 |
|
312 |
-
|
313 |
demo.launch()
|
314 |
|
315 |
gradio_interface()
|
|
|
17 |
|
18 |
access_token = os.environ['HUGGING_FACE_HUB_TOKEN']
|
19 |
|
20 |
+
|
21 |
+
# Model options
|
22 |
+
MODEL_OPTIONS = {
|
23 |
+
"Llama3.1-8B": "meta-llama/Meta-Llama-3.1-8B",
|
24 |
+
"Llama3.1-70B": "meta-llama/Meta-Llama-3.1-70B",
|
25 |
+
}
|
26 |
+
|
27 |
|
28 |
#placeholder for reset
|
29 |
prompts_with_probs = pd.DataFrame(
|
|
|
58 |
logits_lens_probs_by_layer.append(logits_lens_probs)
|
59 |
logits_lens_next_token = torch.argmax(logits_lens_probs, dim=1).save()
|
60 |
logits_lens_token_result_by_layer.append(logits_lens_next_token)
|
61 |
+
tokens_out = model.lm_head.output.argmax(dim=-1).save()
|
62 |
expected_token = tokens_out[0][-1].save()
|
63 |
# logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().numpy() for probs in logits_lens_probs_by_layer])
|
64 |
logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().to(torch.float32).numpy() for probs in logits_lens_probs_by_layer])
|
|
|
70 |
# Find the rank of the expected token (1-based rank)
|
71 |
expected_token_rank = (sorted_indices == expected_token).nonzero(as_tuple=True)[1].item() + 1
|
72 |
logits_lens_ranks_by_layer.append(expected_token_rank)
|
73 |
+
actual_output = model.tokenizer.decode(expected_token.item())
|
74 |
logits_lens_results = [model.tokenizer.decode(next_token.item()) for next_token in logits_lens_token_result_by_layer]
|
75 |
return logits_lens_results, logits_lens_all_probs, actual_output,logits_lens_ranks_by_layer
|
76 |
|
|
|
103 |
|
104 |
def plot_prob(prompts_with_probs):
|
105 |
plt.figure(figsize=(10, 6))
|
106 |
+
texts = [] # List to hold text annotations for adjustment
|
107 |
+
|
108 |
# Iterate over each prompt and plot its probabilities
|
109 |
for prompt in prompts_with_probs['prompt'].unique():
|
110 |
# Filter the DataFrame for the current prompt
|
111 |
prompt_data = prompts_with_probs[prompts_with_probs['prompt'] == prompt]
|
112 |
+
label = f"{prompt}({prompt_data['expected'].iloc[0]})"
|
113 |
|
114 |
# Plot probabilities for this prompt
|
115 |
+
plt.plot(prompt_data['layer'], prompt_data['probs'], marker='x', label=label)
|
116 |
+
|
117 |
# Annotate each point with the corresponding result
|
118 |
for layer, prob, result in zip(prompt_data['layer'], prompt_data['probs'], prompt_data['results']):
|
119 |
+
text = plt.text(layer, prob, result, fontsize=8)
|
120 |
+
texts.append(text) # Add text to the list
|
121 |
|
122 |
# Add labels and title
|
123 |
plt.xlabel('Layer Number')
|
124 |
+
plt.ylabel('Probability')
|
125 |
+
plt.title('Probability of most-likely output token')
|
126 |
plt.grid(True)
|
127 |
+
plt.xlim(0,max(prompts_with_probs['layer']))
|
128 |
plt.ylim(0.0, 1.0)
|
129 |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
130 |
|
131 |
+
# Adjust text to prevent overlap
|
132 |
+
adjust_text(texts, only_move={'points': 'xy', 'texts': 'xy'},
|
133 |
+
arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
|
134 |
+
|
135 |
# Save the plot to a buffer
|
136 |
buf = io.BytesIO()
|
137 |
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
|
|
142 |
|
143 |
def plot_rank(prompts_with_ranks):
|
144 |
plt.figure(figsize=(10, 6))
|
145 |
+
texts = [] # List to hold text annotations for adjustment
|
146 |
+
|
147 |
# Iterate over each prompt and plot its ranks
|
148 |
for prompt in prompts_with_ranks['prompt'].unique():
|
149 |
# Filter the DataFrame for the current prompt
|
150 |
prompt_data = prompts_with_ranks[prompts_with_ranks['prompt'] == prompt]
|
151 |
+
label = f"{prompt}({prompt_data['expected'].iloc[0]})"
|
152 |
|
153 |
# Plot ranks for this prompt
|
154 |
+
plt.plot(prompt_data['layer'], prompt_data['ranks'], marker='x', label=label)
|
155 |
+
|
156 |
# Annotate each point with the corresponding result
|
157 |
for layer, rank, result in zip(prompt_data['layer'], prompt_data['ranks'], prompt_data['results']):
|
158 |
+
text = plt.text(layer, rank, result, ha='right', va='bottom', fontsize=8)
|
159 |
+
texts.append(text) # Add text to the list
|
160 |
|
161 |
# Add labels and title
|
162 |
plt.xlabel('Layer Number')
|
163 |
+
plt.ylabel('Rank')
|
164 |
+
plt.title('Rank of most-likely output token')
|
165 |
plt.grid(True)
|
166 |
+
plt.xlim(0,max(prompts_with_ranks['layer']))
|
167 |
plt.ylim(bottom=0) # Adjust if needed, depending on your rank values
|
168 |
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
169 |
|
170 |
+
# Adjust text to prevent overlap
|
171 |
+
adjust_text(texts,only_move={'points': 'xy', 'texts': 'xy'},
|
172 |
+
arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
|
173 |
|
174 |
# Save the plot to a buffer
|
175 |
buf = io.BytesIO()
|
|
|
179 |
plt.close() # Close the figure to free memory
|
180 |
return img
|
181 |
|
182 |
+
def submit_prompts(model_name, prompts_data):
|
183 |
+
llama = LanguageModel(MODEL_OPTIONS[model_name])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
# Initialize lists to accumulate results
|
185 |
all_prompts = []
|
186 |
all_results = []
|
|
|
226 |
"ranks": all_ranks,
|
227 |
"expected": all_expected,
|
228 |
})
|
229 |
+
return plot_prob(prompts_with_probs), plot_rank(prompts_with_ranks)
|
230 |
|
231 |
def clear_all(prompts):
|
232 |
prompts=[['']]
|
233 |
# prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
|
234 |
prompt_file = None
|
235 |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
236 |
+
return prompts_data,prompt_file,plot_prob(prompts_with_probs),plot_rank(prompts_with_ranks)
|
237 |
|
238 |
def gradio_interface():
|
239 |
with gr.Blocks(theme="gradio/monochrome") as demo:
|
240 |
+
prompts = [['The Eiffel Tower is located in the city of'],['Vatican is located in the city of']]
|
241 |
+
|
242 |
+
# prompts=[['']]
|
243 |
with gr.Row():
|
244 |
with gr.Column(scale=3):
|
245 |
+
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model", value="Llama3.1-8B")
|
246 |
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
247 |
with gr.Column(scale=1):
|
248 |
prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
|
|
|
251 |
with gr.Row():
|
252 |
clear_btn = gr.Button("Clear")
|
253 |
submit_btn = gr.Button("Submit")
|
254 |
+
|
255 |
+
prompt_file.upload(process_file, inputs=[prompts_data, prompt_file], outputs=[prompts_data])
|
256 |
+
|
257 |
+
|
258 |
+
gr.Markdown("The most likely output token is the model's prediction at the final layer, shown in brackets in the plot legend.")
|
259 |
+
# Create a Markdown component for the description
|
260 |
with gr.Row():
|
261 |
+
gr.Markdown("The graph below illustrates the probability of this most likely output token as it is decoded at each layer of the model. Each point on the graph is annotated with the decoded output corresponding to the token that has the highest probability at that particular layer.")
|
262 |
+
gr.Markdown("The graph below illustrates the rank of this most likely output token as it is decoded at each layer of the model. Each point on the graph is annotated with the decoded output corresponding to the token that has the lowest rank at that particular layer.")
|
263 |
+
|
264 |
+
prob_img, rank_img = submit_prompts(model_dropdown.value, prompts)
|
265 |
+
# prob_visualization.value = prob_img # Direct assignment to value
|
266 |
+
# rank_visualization.value = rank_img # Direct assignment to value
|
267 |
+
|
268 |
with gr.Row():
|
269 |
+
prob_visualization = gr.Image(value=prob_img, type="pil",label=" ")
|
270 |
+
rank_visualization = gr.Image(value=rank_img, type="pil",label=" ")
|
271 |
|
272 |
+
clear_btn.click(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization])
|
273 |
+
submit_btn.click(submit_prompts, inputs=[model_dropdown,prompts_data], outputs=[prob_visualization,rank_visualization])#
|
274 |
+
prompt_file.clear(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization])
|
275 |
+
|
276 |
+
# Generate plots with sample prompts on load
|
277 |
|
|
|
278 |
demo.launch()
|
279 |
|
280 |
gradio_interface()
|