File size: 11,507 Bytes
99f24ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import inspect
import torch.nn as nn
from dataclasses import dataclass
from torch.nn import functional as F

# Model Architecture ================================================================================================================

@dataclass
class GPTConfig:
    block_size: int = 1024  # max sequence length
    vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
    n_layer: int = 12   # number of layers
    n_head: int = 12    # number of heads in the multihead attention
    n_embd: int = 768  # embedding dimension
    dropout: float = 0.1


# FLASH ATTENTION
# Flash attention is a kernel fusion operation of the attention operation. 
# It was found out manually. It cannot be found by compilers Because it requires an algorithmic rewrite of how attention is implemented.
# Though it performs more operations, it is faster than regular attention because it is mindful of the memory hierarchy and has high AI.
# It avoids read and write operations. It never materializes the large NxN attention matrix which reduces AI.
# It relies on the online softmax trick which incrementally calculates softmax without having to materialize the inputs to the softmax.

# This is a combination of attention and multi-head attention.
# There are 1024 tokens in a sequence each emitting 3 vectors - Q, K, V.
class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # Key, Query and value Projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        # Output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1
        # Regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        # not really a 'bias', more of a mask, but following the OpenAI/HF naming though
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                     .view(1, 1, config.block_size, config.block_size))
        
    def forward(self, x):
        B, T, C = x.size() # (batch_size, sequence_length, n_embd)

        # Calculate Query, Key, Values for all heads in batch and move head forward to be the batch dim.
        # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs.
        # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer.
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # Attention (materializes the large (T,T) matrix for all the queries and keys)
        # att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        # att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))  # Only looks at previous tokens
        # att = F.softmax(att, dim=-1)
        # y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
        # Output projection
        y = self.c_proj(y)
        return y


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu    = nn.GELU()
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x


# In the GPT-3 paper, the LayerNorm layers are applied 
# before the linear and attention layers.
class Block(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


# A final Layernorm is added before the final linear head.
class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd), # Embedding
            wpe = nn.Embedding(config.block_size, config.n_embd), # Position embeddings
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # Transformer blocks
            ln_f = nn.LayerNorm(config.n_embd), # Final layer norm (GPT3)
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Weight Sharing Scheme
        self.transformer.wte.weight = self.lm_head.weight
        # init params
        self.apply(self._init_weights)

    # Weight Initialization  
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANOGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)


    def forward(self, idx, targets=None):
        # idx is of shape (B, T)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        # Forward the token and posisition embeddings
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
        pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
        tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
        x = tok_emb + pos_emb
        # Forward the blocks of the transformer
        for block in self.transformer.h:
            x = block(x)
        # Forward the final layernorm and the classifier
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x) # (B, T, vocab_size)
        loss = None
        if targets is not None:
            # Flatten out multidiemntsional input for cross entropy. 
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

        return logits, loss

    @classmethod
    def from_pretrained(cls, model_type):
        """Loads pretrained GPT-2 model weights from huggingface"""

        assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
        from transformers import GPT2LMHeadModel
        print("loading weights from pretrained gpt: %s" % model_type)

        # n_layer, n_head and n_embd are determined from model_type
        config_args = {
            'gpt2':         dict(n_layer=12, n_head=12, n_embd=768),  # 124M params
            'gpt2-medium':  dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
            'gpt2-large':   dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
            'gpt2-xl':      dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
        }[model_type]
        config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
        config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints

        # create a from-scratch initialized minGPT model
        config = GPTConfig(**config_args)
        model = GPT(config)
        sd = model.state_dict()
        sd_keys = sd.keys()
        sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # Discard this mask / buffer, not a param
        
        # init a huggingface/transformers model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()

        # copy while ensuring all of the parameters are aligned and match in names and shapes
        sd_keys_hf = sd_hf.keys()
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
        transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
        # Basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
        # This means that we have to transpose these weights when we import them
        assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
        for k in sd_keys_hf:
            if any(k.endswith(w) for w in transposed):
                # special treatment for the Conv1D weights we need to transpose
                assert sd_hf[k].shape[::-1] == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k].t())
            else:
                # vanilla copy over the other parameters
                assert sd_hf[k].shape == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])
        return model
    
    # The parameters are divided into decay and nondecay params.
    # It is common to not decay bias and 1 dimensional tensors.
    def configure_optimizers(self, weight_decay, learning_rate, device, master_process):
        # start with all of the candidate parameters (that require grad)
        param_dict = {pn: p for pn, p in self.named_parameters()}
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # Embeddings and weights in matmul
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # 1D tensors like LayerNorms, biases
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        if master_process:
            print(f"Num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
            print(f"Num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and 'cuda' in device # Fuses the kernels used in the updation of parameters to make it faster
        if master_process:
            print(f"Using fused AdamW: {use_fused} \n")
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
        return optimizer