Added output streaming support for the gradio app.
Browse files
app.py
CHANGED
|
@@ -17,67 +17,78 @@ UNTRAINED_MODEL.eval()
|
|
| 17 |
|
| 18 |
# Load fine-tuned model
|
| 19 |
TRAINED_MODEL = GPT(GPTConfig)
|
| 20 |
-
checkpoint = torch.load("model_19072.pt", weights_only=False
|
| 21 |
TRAINED_MODEL.load_state_dict(checkpoint["model"])
|
| 22 |
TRAINED_MODEL.to(device)
|
| 23 |
TRAINED_MODEL.eval()
|
| 24 |
|
| 25 |
|
| 26 |
-
def generate_text(input,
|
| 27 |
tokens = TOKENIZER.encode(input)
|
| 28 |
-
|
| 29 |
-
tokens =
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
sentences = []
|
| 33 |
-
while x.size(1) < max_length:
|
| 34 |
-
with torch.no_grad():
|
| 35 |
-
logits, loss = model(x)
|
| 36 |
-
logits = logits[:, -1, :]
|
| 37 |
-
probs = F.softmax(logits, dim=-1)
|
| 38 |
-
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
| 39 |
-
ix = torch.multinomial(topk_probs, 1)
|
| 40 |
-
xcol = torch.gather(topk_indices, -1, ix)
|
| 41 |
-
x = torch.cat((x, xcol), dim=1)
|
| 42 |
-
|
| 43 |
-
for i in range(num_sequences):
|
| 44 |
-
tokens = x[i, :max_length].tolist()
|
| 45 |
-
decoded = TOKENIZER.decode(tokens)
|
| 46 |
-
sentences.append(decoded)
|
| 47 |
-
|
| 48 |
-
return sentences
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def gradio_fn(prompt, num_sequences=1, max_length=30):
|
| 52 |
-
"""Generate text using both models."""
|
| 53 |
-
untrained_texts = generate_text(prompt, UNTRAINED_MODEL, num_sequences, max_length)
|
| 54 |
-
untrained_output = "\n\n".join(f"> {s}" for s in untrained_texts)
|
| 55 |
-
|
| 56 |
-
trained_texts = generate_text(prompt, TRAINED_MODEL, num_sequences, max_length)
|
| 57 |
-
trained_output = "\n\n".join(f"> {s}" for s in trained_texts)
|
| 58 |
-
|
| 59 |
-
return untrained_output, trained_output
|
| 60 |
-
|
| 61 |
-
# Gradio interface
|
| 62 |
def main():
|
| 63 |
interface = gr.Interface(
|
| 64 |
-
fn=
|
| 65 |
inputs=[
|
| 66 |
gr.Textbox(label="Enter your prompt here:"),
|
| 67 |
-
gr.Slider(minimum=
|
| 68 |
-
gr.Slider(minimum=
|
| 69 |
-
],
|
| 70 |
-
outputs=[
|
| 71 |
-
gr.Textbox(label="Generated Text (Untrained Model)"),
|
| 72 |
-
gr.Textbox(label="Generated Text (Trained Model)"),
|
| 73 |
],
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
-
|
| 78 |
interface.launch(share=True)
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
-
main()
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 17 |
|
| 18 |
# Load fine-tuned model
|
| 19 |
TRAINED_MODEL = GPT(GPTConfig)
|
| 20 |
+
checkpoint = torch.load("log/model_19072.pt", weights_only=False)
|
| 21 |
TRAINED_MODEL.load_state_dict(checkpoint["model"])
|
| 22 |
TRAINED_MODEL.to(device)
|
| 23 |
TRAINED_MODEL.eval()
|
| 24 |
|
| 25 |
|
| 26 |
+
def generate_text(input, max_length=30, top_k=50):
|
| 27 |
tokens = TOKENIZER.encode(input)
|
| 28 |
+
x_untrained = torch.tensor([tokens], dtype=torch.long).to(device)
|
| 29 |
+
x_trained = torch.tensor([tokens], dtype=torch.long).to(device)
|
| 30 |
+
|
| 31 |
+
# Iterate until one of the sequences reaches max_length
|
| 32 |
+
while (x_untrained.size(1) < max_length) or (x_trained.size(1) < max_length):
|
| 33 |
+
|
| 34 |
+
# --- Untrained Model Forward Pass ---
|
| 35 |
+
if x_untrained.size(1) < max_length:
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
logits_u, _ = UNTRAINED_MODEL(x_untrained)
|
| 38 |
+
logits_u = logits_u[:, -1, :]
|
| 39 |
+
probs_u = F.softmax(logits_u, dim=-1)
|
| 40 |
+
topk_probs_u, topk_indices_u = torch.topk(probs_u, top_k, dim=-1)
|
| 41 |
+
ix_u = torch.multinomial(topk_probs_u, 1)
|
| 42 |
+
next_token_u = torch.gather(topk_indices_u, -1, ix_u)
|
| 43 |
+
x_untrained = torch.cat((x_untrained, next_token_u), dim=1)
|
| 44 |
+
|
| 45 |
+
# --- Trained Model Forward Pass ---
|
| 46 |
+
if x_trained.size(1) < max_length:
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
logits_t, _ = TRAINED_MODEL(x_trained)
|
| 49 |
+
logits_t = logits_t[:, -1, :]
|
| 50 |
+
probs_t = F.softmax(logits_t, dim=-1)
|
| 51 |
+
topk_probs_t, topk_indices_t = torch.topk(probs_t, top_k, dim=-1)
|
| 52 |
+
ix_t = torch.multinomial(topk_probs_t, 1)
|
| 53 |
+
next_token_t = torch.gather(topk_indices_t, -1, ix_t)
|
| 54 |
+
x_trained = torch.cat((x_trained, next_token_t), dim=1)
|
| 55 |
+
|
| 56 |
+
# --- Decode the partial text for each model ---
|
| 57 |
+
untrained_text = TOKENIZER.decode(x_untrained[0].tolist())
|
| 58 |
+
trained_text = TOKENIZER.decode(x_trained[0].tolist())
|
| 59 |
+
|
| 60 |
+
yield (untrained_text, trained_text)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def streaming_fn(prompt, max_length=30, top_k=50):
|
| 64 |
+
for untrained_text, trained_text in generate_text(prompt, max_length, top_k):
|
| 65 |
+
output = (
|
| 66 |
+
f"------------ (Untrained Model) ------------\n\n {untrained_text}\n\n\n"
|
| 67 |
+
f"------------ (Trained Model)------------\n\n {trained_text}"
|
| 68 |
+
)
|
| 69 |
+
yield output
|
| 70 |
+
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
def main():
|
| 73 |
interface = gr.Interface(
|
| 74 |
+
fn=streaming_fn,
|
| 75 |
inputs=[
|
| 76 |
gr.Textbox(label="Enter your prompt here:"),
|
| 77 |
+
gr.Slider(minimum=10, maximum=150, step=10, label="Max Length"),
|
| 78 |
+
gr.Slider(minimum=1, maximum=50, step=10, label="Top-K Samples")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
],
|
| 80 |
+
outputs=gr.Textbox(label="Model Outputs"),
|
| 81 |
+
title="GPT-2 Streaming Text Generator",
|
| 82 |
+
description= (
|
| 83 |
+
"Generate text using an untrained and a trained GPT-2 model."
|
| 84 |
+
"Use prompts that are short, simple and easy to generate coherent looking text."
|
| 85 |
+
"For eg: \n"
|
| 86 |
+
"- \"Hello, my name is\" \n"
|
| 87 |
+
"- \"This is a summary of\" \n"
|
| 88 |
+
"- \"In this article\" \n"
|
| 89 |
+
)
|
| 90 |
)
|
|
|
|
| 91 |
interface.launch(share=True)
|
| 92 |
|
| 93 |
if __name__ == "__main__":
|
| 94 |
+
main()
|
|
|
|
|
|