Spaces:
Runtime error
Runtime error
import torch | |
from comfy.text_encoders.bert import BertAttention | |
import comfy.model_management | |
from comfy.ldm.modules.attention import optimized_attention_for_device | |
class Dino2AttentionOutput(torch.nn.Module): | |
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations): | |
super().__init__() | |
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device) | |
def forward(self, x): | |
return self.dense(x) | |
class Dino2AttentionBlock(torch.nn.Module): | |
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations): | |
super().__init__() | |
self.attention = BertAttention(embed_dim, heads, dtype, device, operations) | |
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations) | |
def forward(self, x, mask, optimized_attention): | |
return self.output(self.attention(x, mask, optimized_attention)) | |
class LayerScale(torch.nn.Module): | |
def __init__(self, dim, dtype, device, operations): | |
super().__init__() | |
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) | |
def forward(self, x): | |
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype) | |
class SwiGLUFFN(torch.nn.Module): | |
def __init__(self, dim, dtype, device, operations): | |
super().__init__() | |
in_features = out_features = dim | |
hidden_features = int(dim * 4) | |
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 | |
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype) | |
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype) | |
def forward(self, x): | |
x = self.weights_in(x) | |
x1, x2 = x.chunk(2, dim=-1) | |
x = torch.nn.functional.silu(x1) * x2 | |
return self.weights_out(x) | |
class Dino2Block(torch.nn.Module): | |
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations): | |
super().__init__() | |
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations) | |
self.layer_scale1 = LayerScale(dim, dtype, device, operations) | |
self.layer_scale2 = LayerScale(dim, dtype, device, operations) | |
self.mlp = SwiGLUFFN(dim, dtype, device, operations) | |
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) | |
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) | |
def forward(self, x, optimized_attention): | |
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention)) | |
x = x + self.layer_scale2(self.mlp(self.norm2(x))) | |
return x | |
class Dino2Encoder(torch.nn.Module): | |
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations): | |
super().__init__() | |
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)]) | |
def forward(self, x, intermediate_output=None): | |
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True) | |
if intermediate_output is not None: | |
if intermediate_output < 0: | |
intermediate_output = len(self.layer) + intermediate_output | |
intermediate = None | |
for i, l in enumerate(self.layer): | |
x = l(x, optimized_attention) | |
if i == intermediate_output: | |
intermediate = x.clone() | |
return x, intermediate | |
class Dino2PatchEmbeddings(torch.nn.Module): | |
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.projection = operations.Conv2d( | |
in_channels=num_channels, | |
out_channels=dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=True, | |
dtype=dtype, | |
device=device | |
) | |
def forward(self, pixel_values): | |
return self.projection(pixel_values).flatten(2).transpose(1, 2) | |
class Dino2Embeddings(torch.nn.Module): | |
def __init__(self, dim, dtype, device, operations): | |
super().__init__() | |
patch_size = 14 | |
image_size = 518 | |
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations) | |
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device)) | |
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device)) | |
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device)) | |
def forward(self, pixel_values): | |
x = self.patch_embeddings(pixel_values) | |
# TODO: mask_token? | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype) | |
return x | |
class Dinov2Model(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
super().__init__() | |
num_layers = config_dict["num_hidden_layers"] | |
dim = config_dict["hidden_size"] | |
heads = config_dict["num_attention_heads"] | |
layer_norm_eps = config_dict["layer_norm_eps"] | |
self.embeddings = Dino2Embeddings(dim, dtype, device, operations) | |
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations) | |
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) | |
def forward(self, pixel_values, attention_mask=None, intermediate_output=None): | |
x = self.embeddings(pixel_values) | |
x, i = self.encoder(x, intermediate_output=intermediate_output) | |
x = self.layernorm(x) | |
pooled_output = x[:, 0, :] | |
return x, i, pooled_output, None | |