import torch from comfy.text_encoders.bert import BertAttention import comfy.model_management from comfy.ldm.modules.attention import optimized_attention_for_device class Dino2AttentionOutput(torch.nn.Module): def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations): super().__init__() self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device) def forward(self, x): return self.dense(x) class Dino2AttentionBlock(torch.nn.Module): def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations): super().__init__() self.attention = BertAttention(embed_dim, heads, dtype, device, operations) self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations) def forward(self, x, mask, optimized_attention): return self.output(self.attention(x, mask, optimized_attention)) class LayerScale(torch.nn.Module): def __init__(self, dim, dtype, device, operations): super().__init__() self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) def forward(self, x): return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype) class SwiGLUFFN(torch.nn.Module): def __init__(self, dim, dtype, device, operations): super().__init__() in_features = out_features = dim hidden_features = int(dim * 4) hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype) self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype) def forward(self, x): x = self.weights_in(x) x1, x2 = x.chunk(2, dim=-1) x = torch.nn.functional.silu(x1) * x2 return self.weights_out(x) class Dino2Block(torch.nn.Module): def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations): super().__init__() self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations) self.layer_scale1 = LayerScale(dim, dtype, device, operations) self.layer_scale2 = LayerScale(dim, dtype, device, operations) self.mlp = SwiGLUFFN(dim, dtype, device, operations) self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) def forward(self, x, optimized_attention): x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention)) x = x + self.layer_scale2(self.mlp(self.norm2(x))) return x class Dino2Encoder(torch.nn.Module): def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations): super().__init__() self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)]) def forward(self, x, intermediate_output=None): optimized_attention = optimized_attention_for_device(x.device, False, small_input=True) if intermediate_output is not None: if intermediate_output < 0: intermediate_output = len(self.layer) + intermediate_output intermediate = None for i, l in enumerate(self.layer): x = l(x, optimized_attention) if i == intermediate_output: intermediate = x.clone() return x, intermediate class Dino2PatchEmbeddings(torch.nn.Module): def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None): super().__init__() self.projection = operations.Conv2d( in_channels=num_channels, out_channels=dim, kernel_size=patch_size, stride=patch_size, bias=True, dtype=dtype, device=device ) def forward(self, pixel_values): return self.projection(pixel_values).flatten(2).transpose(1, 2) class Dino2Embeddings(torch.nn.Module): def __init__(self, dim, dtype, device, operations): super().__init__() patch_size = 14 image_size = 518 self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations) self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device)) self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device)) self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device)) def forward(self, pixel_values): x = self.patch_embeddings(pixel_values) # TODO: mask_token? x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype) return x class Dinov2Model(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() num_layers = config_dict["num_hidden_layers"] dim = config_dict["hidden_size"] heads = config_dict["num_attention_heads"] layer_norm_eps = config_dict["layer_norm_eps"] self.embeddings = Dino2Embeddings(dim, dtype, device, operations) self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations) self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device) def forward(self, pixel_values, attention_mask=None, intermediate_output=None): x = self.embeddings(pixel_values) x, i = self.encoder(x, intermediate_output=intermediate_output) x = self.layernorm(x) pooled_output = x[:, 0, :] return x, i, pooled_output, None