Spaces:
Running
on
Zero
Running
on
Zero
Man-isH-07
commited on
Commit
·
8c22e42
1
Parent(s):
83557e0
Again At Normal
Browse files
app.py
CHANGED
@@ -24,10 +24,7 @@ if torch.cuda.is_available():
|
|
24 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
25 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
-
|
28 |
-
if tokenizer.pad_token is None:
|
29 |
-
tokenizer.pad_token = tokenizer.eos_token
|
30 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
31 |
|
32 |
@spaces.GPU
|
33 |
def generate(
|
@@ -41,31 +38,15 @@ def generate(
|
|
41 |
) -> Iterator[str]:
|
42 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
43 |
|
44 |
-
|
45 |
-
inputs = tokenizer.apply_chat_template(conversation, return_tensors="pt", padding=True, return_attention_mask=True)
|
46 |
-
|
47 |
-
# Check if inputs is a dictionary or a tensor
|
48 |
-
if isinstance(inputs, dict):
|
49 |
-
input_ids = inputs["input_ids"]
|
50 |
-
attention_mask = inputs.get("attention_mask", None)
|
51 |
-
else:
|
52 |
-
input_ids = inputs
|
53 |
-
attention_mask = (input_ids != tokenizer.pad_token_id).long() if tokenizer.pad_token_id is not None else None
|
54 |
-
|
55 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
56 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
57 |
-
if attention_mask is not None:
|
58 |
-
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
59 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
60 |
-
|
61 |
input_ids = input_ids.to(model.device)
|
62 |
-
if attention_mask is not None:
|
63 |
-
attention_mask = attention_mask.to(model.device)
|
64 |
|
65 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
66 |
generate_kwargs = dict(
|
67 |
-
input_ids
|
68 |
-
attention_mask=attention_mask,
|
69 |
streamer=streamer,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=True,
|
@@ -78,132 +59,63 @@ def generate(
|
|
78 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
79 |
t.start()
|
80 |
|
81 |
-
# First, yield the user's message (which contains the prompts)
|
82 |
-
yield message
|
83 |
-
|
84 |
-
# Then, yield the model's response
|
85 |
outputs = []
|
86 |
for text in streamer:
|
87 |
outputs.append(text)
|
88 |
yield "".join(outputs)
|
89 |
|
90 |
-
# Yield the final model output
|
91 |
-
final_output = "".join(outputs)
|
92 |
-
yield final_output
|
93 |
-
|
94 |
-
# Updated JavaScript with debugging and robustness
|
95 |
-
custom_js = """
|
96 |
-
function splitPrompts() {
|
97 |
-
console.log("Running splitPrompts function"); // Debug log
|
98 |
-
const messages = document.querySelectorAll('.chatbot-message, .message, [class*="message"]');
|
99 |
-
console.log("Found messages:", messages.length); // Debug log
|
100 |
-
messages.forEach((message, index) => {
|
101 |
-
const text = message.innerHTML;
|
102 |
-
console.log("Message", index, "text:", text); // Debug log
|
103 |
-
|
104 |
-
if (text.includes('Positive Prompt:') && text.includes('Negative Prompt:')) {
|
105 |
-
console.log("Found Positive and Negative prompts in message", index); // Debug log
|
106 |
-
const positiveMatch = text.match(/Positive Prompt:(.*?)(?=(Negative Prompt:|$))/s);
|
107 |
-
const negativeMatch = text.match(/Negative Prompt:(.*)/s);
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
""
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
additional_inputs=[
|
161 |
-
gr.Slider(
|
162 |
-
label="Max new tokens",
|
163 |
-
minimum=1,
|
164 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
165 |
-
step=1,
|
166 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
167 |
-
),
|
168 |
-
gr.Slider(
|
169 |
-
label="Temperature",
|
170 |
-
minimum=0.1,
|
171 |
-
maximum=4.0,
|
172 |
-
step=0.1,
|
173 |
-
value=0.6,
|
174 |
-
),
|
175 |
-
gr.Slider(
|
176 |
-
label="Top-p (nucleus sampling)",
|
177 |
-
minimum=0.05,
|
178 |
-
maximum=1.0,
|
179 |
-
step=0.05,
|
180 |
-
value=0.9,
|
181 |
-
),
|
182 |
-
gr.Slider(
|
183 |
-
label="Top-k",
|
184 |
-
minimum=1,
|
185 |
-
maximum=1000,
|
186 |
-
step=1,
|
187 |
-
value=50,
|
188 |
-
),
|
189 |
-
gr.Slider(
|
190 |
-
label="Repetition penalty",
|
191 |
-
minimum=1.0,
|
192 |
-
maximum=2.0,
|
193 |
-
step=0.05,
|
194 |
-
value=1.2,
|
195 |
-
),
|
196 |
-
],
|
197 |
-
stop_btn=None,
|
198 |
-
examples=[
|
199 |
-
["Hello there! How are you doing?"],
|
200 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
201 |
-
["Explain the plot of Cinderella in a sentence."],
|
202 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
203 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
204 |
-
],
|
205 |
-
type="messages",
|
206 |
-
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
demo.queue(max_size=20).launch()
|
|
|
24 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
25 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
|
|
|
|
|
|
|
28 |
|
29 |
@spaces.GPU
|
30 |
def generate(
|
|
|
38 |
) -> Iterator[str]:
|
39 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
40 |
|
41 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
43 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
|
|
44 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
45 |
input_ids = input_ids.to(model.device)
|
|
|
|
|
46 |
|
47 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
48 |
generate_kwargs = dict(
|
49 |
+
{"input_ids": input_ids},
|
|
|
50 |
streamer=streamer,
|
51 |
max_new_tokens=max_new_tokens,
|
52 |
do_sample=True,
|
|
|
59 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
60 |
t.start()
|
61 |
|
|
|
|
|
|
|
|
|
62 |
outputs = []
|
63 |
for text in streamer:
|
64 |
outputs.append(text)
|
65 |
yield "".join(outputs)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
demo = gr.ChatInterface(
|
69 |
+
fn=generate,
|
70 |
+
additional_inputs=[
|
71 |
+
gr.Slider(
|
72 |
+
label="Max new tokens",
|
73 |
+
minimum=1,
|
74 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
75 |
+
step=1,
|
76 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
77 |
+
),
|
78 |
+
gr.Slider(
|
79 |
+
label="Temperature",
|
80 |
+
minimum=0.1,
|
81 |
+
maximum=4.0,
|
82 |
+
step=0.1,
|
83 |
+
value=0.6,
|
84 |
+
),
|
85 |
+
gr.Slider(
|
86 |
+
label="Top-p (nucleus sampling)",
|
87 |
+
minimum=0.05,
|
88 |
+
maximum=1.0,
|
89 |
+
step=0.05,
|
90 |
+
value=0.9,
|
91 |
+
),
|
92 |
+
gr.Slider(
|
93 |
+
label="Top-k",
|
94 |
+
minimum=1,
|
95 |
+
maximum=1000,
|
96 |
+
step=1,
|
97 |
+
value=50,
|
98 |
+
),
|
99 |
+
gr.Slider(
|
100 |
+
label="Repetition penalty",
|
101 |
+
minimum=1.0,
|
102 |
+
maximum=2.0,
|
103 |
+
step=0.05,
|
104 |
+
value=1.2,
|
105 |
+
),
|
106 |
+
],
|
107 |
+
stop_btn=None,
|
108 |
+
examples=[
|
109 |
+
["Hello there! How are you doing?"],
|
110 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
111 |
+
["Explain the plot of Cinderella in a sentence."],
|
112 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
113 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
114 |
+
],
|
115 |
+
type="messages",
|
116 |
+
description=DESCRIPTION,
|
117 |
+
css_paths="style.css",
|
118 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.queue(max_size=20).launch()
|
style.css
CHANGED
@@ -9,22 +9,3 @@ h1 {
|
|
9 |
background: #1565c0;
|
10 |
border-radius: 100vh;
|
11 |
}
|
12 |
-
|
13 |
-
/* Style for the positive prompt box */
|
14 |
-
.positive-prompt {
|
15 |
-
background-color: #2a2a2a; /* Dark background to match the theme */
|
16 |
-
border: 1px solid #444; /* Subtle border */
|
17 |
-
border-radius: 8px;
|
18 |
-
padding: 15px;
|
19 |
-
margin-bottom: 10px; /* Space between the two boxes */
|
20 |
-
color: #ffffff; /* White text for readability */
|
21 |
-
}
|
22 |
-
|
23 |
-
/* Style for the negative prompt box */
|
24 |
-
.negative-prompt {
|
25 |
-
background-color: #2a2a2a;
|
26 |
-
border: 1px solid #444;
|
27 |
-
border-radius: 8px;
|
28 |
-
padding: 15px;
|
29 |
-
color: #ffffff;
|
30 |
-
}
|
|
|
9 |
background: #1565c0;
|
10 |
border-radius: 100vh;
|
11 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|