Spaces:
Build error
Build error
update
Browse files- top5_error_rate.py +18 -18
top5_error_rate.py
CHANGED
|
@@ -44,39 +44,39 @@ class Top5ErrorRate(evaluate.Metric):
|
|
| 44 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 45 |
features=datasets.Features(
|
| 46 |
{
|
| 47 |
-
|
| 48 |
-
|
| 49 |
}
|
| 50 |
-
if self.config_name ==
|
| 51 |
else {
|
| 52 |
-
|
| 53 |
-
|
| 54 |
}
|
| 55 |
),
|
| 56 |
reference_urls=[],
|
| 57 |
)
|
| 58 |
|
| 59 |
def _compute(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
) -> Dict[str, Any]:
|
| 66 |
# to numpy array
|
| 67 |
-
outputs = np.array(predictions
|
| 68 |
labels = np.array(references)
|
| 69 |
|
| 70 |
# Top-1 ACC
|
| 71 |
pred = outputs.argmax(axis=1)
|
| 72 |
acc = (pred == labels).mean()
|
| 73 |
|
| 74 |
-
# Top-5 Error
|
| 75 |
-
top5_indices =
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
top5_error_rate = 1 - correct.mean()
|
| 78 |
|
| 79 |
-
return {
|
| 80 |
-
"accuracy": float(acc),
|
| 81 |
-
"top5_error_rate": float(top5_error_rate)
|
| 82 |
-
}
|
|
|
|
| 44 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 45 |
features=datasets.Features(
|
| 46 |
{
|
| 47 |
+
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
|
| 48 |
+
'references': datasets.Sequence(datasets.Value('int32')),
|
| 49 |
}
|
| 50 |
+
if self.config_name == 'multilabel'
|
| 51 |
else {
|
| 52 |
+
'predictions': datasets.Sequence(datasets.Value('float32')),
|
| 53 |
+
'references': datasets.Value('int32'),
|
| 54 |
}
|
| 55 |
),
|
| 56 |
reference_urls=[],
|
| 57 |
)
|
| 58 |
|
| 59 |
def _compute(
|
| 60 |
+
self,
|
| 61 |
+
*,
|
| 62 |
+
predictions: list[list[float]] = None,
|
| 63 |
+
references: list[int] = None,
|
| 64 |
+
**kwargs,
|
| 65 |
) -> Dict[str, Any]:
|
| 66 |
# to numpy array
|
| 67 |
+
outputs = np.array(predictions)
|
| 68 |
labels = np.array(references)
|
| 69 |
|
| 70 |
# Top-1 ACC
|
| 71 |
pred = outputs.argmax(axis=1)
|
| 72 |
acc = (pred == labels).mean()
|
| 73 |
|
| 74 |
+
# Top-5 Error rate
|
| 75 |
+
top5_indices = np.argpartition(outputs, -5, axis=1)[:, -5:]
|
| 76 |
+
|
| 77 |
+
# 使用广播机制直接比较
|
| 78 |
+
# 使用np.any的axis参数直接在最后一个维度上检查是否存在匹配
|
| 79 |
+
correct = np.any(top5_indices == labels[:, np.newaxis], axis=1)
|
| 80 |
top5_error_rate = 1 - correct.mean()
|
| 81 |
|
| 82 |
+
return {'accuracy': float(acc), 'top5_error_rate': float(top5_error_rate)}
|
|
|
|
|
|
|
|
|