# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union, Tuple, List, Callable, Dict from tqdm import tqdm import torch import torch.nn.functional as nnf import numpy as np import abc from . import ptp_utils from . import seq_aligner import shutil from torch.optim.adam import Adam from PIL import Image LOW_RESOURCE = False NUM_DDIM_STEPS = 50 MAX_NUM_WORDS = 77 device = torch.device('cuda') from transformers import CLIPTextModel, CLIPTokenizer pretrained_model_path = "checkpoints/CompVis/stable-diffusion-v1-4/" ldm_stable = None tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") class LocalBlend: def get_mask(self, maps, alpha, use_pool): k = 1 maps = (maps * alpha).sum(-1).mean(1) if use_pool: maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) mask = nnf.interpolate(maps, size=(x_t.shape[2:])) mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] mask = mask.gt(self.th[1-int(use_pool)]) mask = mask[:1] + mask return mask def __call__(self, x_t, attention_store): self.counter += 1 if self.counter > self.start_blend: maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] maps = torch.cat(maps, dim=1) mask = self.get_mask(maps, self.alpha_layers, True) if self.substruct_layers is not None: maps_sub = ~self.get_mask(maps, self.substruct_layers, False) mask = mask * maps_sub mask = mask.float() x_t = x_t[:1] + mask * (x_t - x_t[:1]) return x_t def __init__(self, prompts: List[str], words: List[List[str]], substruct_words=None, start_blend=0.2, th=(.3, .3)): alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) for i, (prompt, words_) in enumerate(zip(prompts, words)): if type(words_) is str: words_ = [words_] for word in words_: ind = ptp_utils.get_word_inds(prompt, word, tokenizer) alpha_layers[i, :, :, :, :, ind] = 1 if substruct_words is not None: substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)): if type(words_) is str: words_ = [words_] for word in words_: ind = ptp_utils.get_word_inds(prompt, word, tokenizer) substruct_layers[i, :, :, :, :, ind] = 1 self.substruct_layers = substruct_layers.to(device) else: self.substruct_layers = None self.alpha_layers = alpha_layers.to(device) self.start_blend = int(start_blend * NUM_DDIM_STEPS) self.counter = 0 self.th=th class EmptyControl: def step_callback(self, x_t): return x_t def between_steps(self): return def __call__(self, attn, is_cross: bool, place_in_unet: str): return attn class AttentionControl(abc.ABC): def step_callback(self, x_t): return x_t def between_steps(self): return @property def num_uncond_att_layers(self): return self.num_att_layers if LOW_RESOURCE else 0 @abc.abstractmethod def forward (self, attn, is_cross: bool, place_in_unet: str): raise NotImplementedError def __call__(self, attn, is_cross: bool, place_in_unet: str): if self.cur_att_layer >= self.num_uncond_att_layers: if LOW_RESOURCE: attn = self.forward(attn, is_cross, place_in_unet) else: h = attn.shape[0] attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: self.cur_att_layer = 0 self.cur_step += 1 self.between_steps() return attn def reset(self): self.cur_step = 0 self.cur_att_layer = 0 def __init__(self): self.cur_step = 0 self.num_att_layers = -1 self.cur_att_layer = 0 class SpatialReplace(EmptyControl): def step_callback(self, x_t): if self.cur_step < self.stop_inject: b = x_t.shape[0] x_t = x_t[:1].expand(b, *x_t.shape[1:]) return x_t def __init__(self, stop_inject: float): super(SpatialReplace, self).__init__() self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS) class AttentionStore(AttentionControl): @staticmethod def get_empty_store(): return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" if attn.shape[1] <= 32 ** 2: # avoid memory overhead self.step_store[key].append(attn) return attn def between_steps(self): if len(self.attention_store) == 0: self.attention_store = self.step_store else: for key in self.attention_store: for i in range(len(self.attention_store[key])): self.attention_store[key][i] += self.step_store[key][i] self.step_store = self.get_empty_store() def get_average_attention(self): average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} return average_attention def reset(self): super(AttentionStore, self).reset() self.step_store = self.get_empty_store() self.attention_store = {} def __init__(self): super(AttentionStore, self).__init__() self.step_store = self.get_empty_store() self.attention_store = {} class AttentionControlEdit(AttentionStore, abc.ABC): def step_callback(self, x_t): if self.local_blend is not None: x_t = self.local_blend(x_t, self.attention_store) return x_t def replace_self_attention(self, attn_base, att_replace, place_in_unet): if att_replace.shape[2] <= 32 ** 2: attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) return attn_base else: return att_replace @abc.abstractmethod def replace_cross_attention(self, attn_base, att_replace): raise NotImplementedError def forward(self, attn, is_cross: bool, place_in_unet: str): super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): h = attn.shape[0] // (self.batch_size) attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) attn_base, attn_repalce = attn[0], attn[1:] if is_cross: alpha_words = self.cross_replace_alpha[self.cur_step] attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce attn[1:] = attn_repalce_new else: attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet) attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) return attn def __init__(self, prompts, num_steps: int, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], self_replace_steps: Union[float, Tuple[float, float]], local_blend: Optional[LocalBlend]): super(AttentionControlEdit, self).__init__() self.batch_size = len(prompts) self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) if type(self_replace_steps) is float: self_replace_steps = 0, self_replace_steps self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) self.local_blend = local_blend class AttentionReplace(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None): super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) class AttentionRefine(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) # attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) return attn_replace def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None): super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) self.mapper, alphas = self.mapper.to(device), alphas.to(device) self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) class AttentionReweight(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): if self.prev_controller is not None: attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] # attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) return attn_replace def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.equalizer = equalizer.to(device) self.prev_controller = controller def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]): if type(word_select) is int or type(word_select) is str: word_select = (word_select,) equalizer = torch.ones(1, 77) for word, val in zip(word_select, values): inds = ptp_utils.get_word_inds(text, word, tokenizer) equalizer[:, inds] = val return equalizer def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int): out = [] attention_maps = attention_store.get_average_attention() num_pixels = res ** 2 for location in from_where: for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: if item.shape[1] == num_pixels: cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] out.append(cross_maps) out = torch.cat(out, dim=0) out = out.sum(0) / out.shape[0] return out.cpu() def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None) -> AttentionControlEdit: if blend_words is None: lb = None else: lb = LocalBlend(prompts, blend_word) if is_replace_controller: controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) else: controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) if equilizer_params is not None: eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"]) controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller) return controller def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0): tokens = tokenizer.encode(prompts[select]) decoder = tokenizer.decode attention_maps = aggregate_attention(attention_store, res, from_where, True, select) images = [] for i in range(len(tokens)): image = attention_maps[:, :, i] image = 255 * image / image.max() image = image.unsqueeze(-1).expand(*image.shape, 3) image = image.numpy().astype(np.uint8) image = np.array(Image.fromarray(image).resize((256, 256))) image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) images.append(image) ptp_utils.view_images(np.stack(images, axis=0)) class NullInversion: def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps alpha_prod_t = self.scheduler.alphas_cumprod[timestep] alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction return prev_sample def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] beta_prod_t = 1 - alpha_prod_t next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction return next_sample def get_noise_pred_single(self, latents, t, context, normal_infer=True): noise_pred = self.model.unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"] return noise_pred def get_noise_pred(self, latents, t, is_forward=True, context=None, normal_infer=True): latents_input = torch.cat([latents] * 2) if context is None: context = self.context guidance_scale = 1 if is_forward else self.guidance_scale noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"] noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) if is_forward: latents = self.next_step(noise_pred, t, latents) else: latents = self.prev_step(noise_pred, t, latents) return latents @torch.no_grad() def latent2image(self, latents, return_type='np'): latents = 1 / 0.18215 * latents.detach() image = self.model.vae.decode(latents)['sample'] if return_type == 'np': image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = (image * 255).astype(np.uint8) return image @torch.no_grad() def image2latent(self, image): with torch.no_grad(): if type(image) is Image: image = np.array(image) if type(image) is torch.Tensor and image.dim() == 4: latents = image else: image = torch.from_numpy(image).float() / 127.5 - 1 image = image.permute(2, 0, 1).unsqueeze(0).to(device) latents = self.model.vae.encode(image)['latent_dist'].mean latents = latents * 0.18215 return latents @torch.no_grad() def init_prompt(self, prompt: str): uncond_input = self.model.tokenizer( [""], padding="max_length", max_length=self.model.tokenizer.model_max_length, return_tensors="pt" ) uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0] text_input = self.model.tokenizer( [prompt], padding="max_length", max_length=self.model.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) # (1, 77, 768) text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0] # (2, 77, 768) self.context = torch.cat([uncond_embeddings, text_embeddings]) self.prompt = prompt @torch.no_grad() def ddim_loop(self, latent): uncond_embeddings, cond_embeddings = self.context.chunk(2) cond = cond_embeddings if self.null_inv_with_prompt else uncond_embeddings all_latent = [latent] latent = latent.clone().detach() for i in range(NUM_DDIM_STEPS): t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1] noise_pred = self.get_noise_pred_single(latent, t, cond, normal_infer=True) latent = self.next_step(noise_pred, t, latent) all_latent.append(latent) return all_latent @property def scheduler(self): return self.model.scheduler @torch.no_grad() def ddim_inversion(self, latent): ddim_latents = self.ddim_loop(latent) return ddim_latents def null_optimization(self, latents, null_inner_steps, epsilon, null_base_lr=1e-2): uncond_embeddings, cond_embeddings = self.context.chunk(2) uncond_embeddings_list = [] latent_cur = latents[-1] bar = tqdm(total=null_inner_steps * NUM_DDIM_STEPS) for i in range(NUM_DDIM_STEPS): uncond_embeddings = uncond_embeddings.clone().detach() uncond_embeddings.requires_grad = True optimizer = Adam([uncond_embeddings], lr=null_base_lr * (1. - i / 100.)) latent_prev = latents[len(latents) - i - 2] t = self.model.scheduler.timesteps[i] with torch.no_grad(): noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings, normal_infer=self.null_normal_infer) for j in range(null_inner_steps): noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings, normal_infer=self.null_normal_infer) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) latents_prev_rec = self.prev_step(noise_pred, t, latent_cur) loss = nnf.mse_loss(latents_prev_rec, latent_prev) optimizer.zero_grad() loss.backward() optimizer.step() assert not torch.isnan(uncond_embeddings.abs().mean()) loss_item = loss.item() bar.update() if loss_item < epsilon + i * 2e-5: break for j in range(j + 1, null_inner_steps): bar.update() uncond_embeddings_list.append(uncond_embeddings[:1].detach()) with torch.no_grad(): context = torch.cat([uncond_embeddings, cond_embeddings]) latent_cur = self.get_noise_pred(latent_cur, t, False, context, normal_infer=self.null_normal_infer) bar.close() return uncond_embeddings_list def invert(self, latents: torch.Tensor, prompt: str, null_inner_steps=10, early_stop_epsilon=1e-5, verbose=False, null_base_lr=1e-2): self.init_prompt(prompt) if verbose: print("DDIM inversion...") ddim_latents = self.ddim_inversion(latents.to(torch.float32)) if verbose: print("Null-text optimization...") uncond_embeddings = self.null_optimization(ddim_latents, null_inner_steps, early_stop_epsilon, null_base_lr=null_base_lr) return ddim_latents[-1], uncond_embeddings def __init__(self, model, guidance_scale, null_inv_with_prompt, null_normal_infer=True): self.null_normal_infer = null_normal_infer self.null_inv_with_prompt = null_inv_with_prompt self.guidance_scale = guidance_scale self.model = model self.tokenizer = self.model.tokenizer self.model.scheduler.set_timesteps(NUM_DDIM_STEPS) self.prompt = None self.context = None