# A100 Zero GPU import spaces # TroL Package import torch from PIL import Image from utils.utils import * import torch.nn.functional as F from trol.load_trol import load_trol from torchvision.transforms.functional import pil_to_tensor # Gradio Package import time import gradio as gr from threading import Thread from accelerate import Accelerator from transformers import TextIteratorStreamer from torchvision.transforms.functional import pil_to_tensor # flash attention import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # accel accel = Accelerator() # model selection link = "TroL-7B" # [Select One] 'TroL-1.8B' | 'TroL-3.8B' | 'TroL-7B' # User prompt prompt_type="with_image" # Select one option "text_only", "with_image" img_path='figures/demo.png' question="What is the troll doing? Provide the detail in the image and imagine what the event happens." # loading model model, tokenizer = load_trol(link=link) # cpu -> gpu for param in model.parameters(): if not param.is_cuda: param.data = param.to('cuda:0') def threading_function(inputs, image_token_number, streamer, device, temperature, new_max_token, top_p): # propagation _inputs = model.eval_process(inputs=inputs, data='demo', tokenizer=tokenizer, device=device, img_token_number=image_token_number) generation_kwargs = _inputs generation_kwargs.update({'streamer': streamer}) generation_kwargs.update({'do_sample': True}) generation_kwargs.update({'max_new_tokens': new_max_token}) generation_kwargs.update({'top_p': top_p}) generation_kwargs.update({'temperature': temperature}) generation_kwargs.update({'use_cache': True}) return model.generate(**generation_kwargs) @spaces.GPU def bot_streaming(message, history, link, temperature, new_max_token, top_p): try: # prompt type -> input prompt image_token_number = None if len(message['files']) != 0: # Image Load image = pil_to_tensor(Image.open(Image.open(message['files'][0]).convert("RGB")).convert("RGB")) if not "3.8B" in link: image_token_number = 1225 image = F.interpolate(image.unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0) inputs = [{'image': image, 'question': message['text']}] else: inputs = [{'question': message['text']}] # Text Generation with torch.inference_mode(): # kwargs streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) # Threading generation thread = Thread(target=threading_function, kwargs=dict(inputs=inputs, image_token_number=image_token_number, streamer=streamer, device=accel.device, temperature=temperature, new_max_token=new_max_token, top_p=top_p)) thread.start() # generated text generated_text = "" for new_text in streamer: generated_text += new_text generated_text # Text decoding response = output_filtering(generated_text, model) except: response = "There may be unsupported format: ex) pdf, video, sound. Only supported is single image in this version." # private log print text = message['text'] files = message['files'] print(f'Text: {text}') print(f'MM Files: {files}') buffer = "" for character in response: buffer += character time.sleep(0.015) yield buffer demo = gr.ChatInterface(fn=bot_streaming, additional_inputs = [gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")], additional_inputs_accordion="Generation Hyperparameters", theme=gr.themes.Soft(), title="☄️Meteor", description="Meteor is efficient 7B size Large Language and Vision Model built on the help of traversal of rationale.\n" "Its inference speed highly depends on assinging non-scheduled GPU. (Therefore, once all GPUs are busy, then inference may be taken in infinity)", stop_btn="Stop Generation", multimodal=True) demo.launch() # Generate with torch.inference_mode(): _inputs = model.eval_process(inputs=inputs, data='demo', tokenizer=tokenizer, device='cuda:0', img_token_number=image_token_number) generate_ids = model.generate(**_inputs, max_new_tokens=256, use_cache=True) response = output_filtering(tokenizer.batch_decode(generate_ids, skip_special_tokens=False)[0], model) print(response)