Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,36 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, TFBertForSeq2SeqLM # Assuming TFBert model
|
| 2 |
-
|
| 3 |
-
# Load tokenizer configurations
|
| 4 |
-
source_tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/source_tokenizer_config.json")
|
| 5 |
-
target_tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/target_tokenizer_config.json")
|
| 6 |
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
| 8 |
model = load_model("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/transliteration_model.h5")
|
| 9 |
-
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def translate(malayalam_text):
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
return english_text
|
| 18 |
|
| 19 |
interface = gradio.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from tensorflow.keras.models import load_model
|
| 2 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 3 |
+
import json
|
| 4 |
+
from gradio import Interface
|
| 5 |
|
| 6 |
+
# Load model (replace with your actual path)
|
| 7 |
model = load_model("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/transliteration_model.h5")
|
| 8 |
+
|
| 9 |
+
# Load tokenizers from configuration files (replace with your paths)
|
| 10 |
+
with open("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/source_tokenizer_config.json", "r") as f:
|
| 11 |
+
source_tokenizer_config = json.load(f)
|
| 12 |
+
source_tokenizer = Tokenizer(num_words=source_tokenizer_config["num_words"])
|
| 13 |
+
source_tokenizer.fit_on_texts(source_tokenizer_config["texts"]) # Assuming pre-defined texts
|
| 14 |
+
|
| 15 |
+
with open("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/target_tokenizer_config.json", "r") as f:
|
| 16 |
+
target_tokenizer_config = json.load(f)
|
| 17 |
+
target_tokenizer = Tokenizer(num_words=target_tokenizer_config["num_words"])
|
| 18 |
+
target_tokenizer.fit_on_texts(target_tokenizer_config["texts"]) # Assuming pre-defined texts
|
| 19 |
|
| 20 |
def translate(malayalam_text):
|
| 21 |
+
# Preprocessing (tokenization)
|
| 22 |
+
source_tokens = source_tokenizer.texts_to_sequences([malayalam_text])[0]
|
| 23 |
+
|
| 24 |
+
# Padding (adjust maxlen based on your model's requirements)
|
| 25 |
+
maxlen = 100 # Example value, adjust as needed
|
| 26 |
+
padded_text = pad_sequences([source_tokens], maxlen=maxlen, padding="post")
|
| 27 |
+
|
| 28 |
+
# Make predictions using the model
|
| 29 |
+
predictions = model.predict(padded_text)
|
| 30 |
+
|
| 31 |
+
# Postprocessing (decoding)
|
| 32 |
+
english_text = target_tokenizer.sequences_to_texts([predictions[0]])[0]
|
| 33 |
+
|
| 34 |
return english_text
|
| 35 |
|
| 36 |
interface = gradio.Interface(
|