Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from pypdf import PdfReader
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import re
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
# Load Mistral model from Hugging Face
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 12 |
+
device_map="auto",
|
| 13 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 14 |
+
)
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
# Read PDF text
|
| 18 |
+
def get_pdf_text(pdf_doc):
|
| 19 |
+
text = ""
|
| 20 |
+
reader = PdfReader(pdf_doc)
|
| 21 |
+
for page in reader.pages:
|
| 22 |
+
text += page.extract_text()
|
| 23 |
+
return text
|
| 24 |
+
|
| 25 |
+
# Extract invoice data using the model
|
| 26 |
+
def extracted_data(pages_data):
|
| 27 |
+
prompt = f"""Extract the following values from the text:
|
| 28 |
+
invoice no., Description, Quantity, date, Unit price, Amount, Total, email, phone number, and address.
|
| 29 |
+
|
| 30 |
+
Text: {pages_data}
|
| 31 |
+
|
| 32 |
+
Output format:
|
| 33 |
+
{{
|
| 34 |
+
'Invoice no.': '1001329',
|
| 35 |
+
'Description': 'Office Chair',
|
| 36 |
+
'Quantity': '2',
|
| 37 |
+
'Date': '5/4/2023',
|
| 38 |
+
'Unit price': '1100.00',
|
| 39 |
+
'Amount': '2200.00',
|
| 40 |
+
'Total': '2200.00',
|
| 41 |
+
'Email': '[email protected]',
|
| 42 |
+
'Phone number': '9999999999',
|
| 43 |
+
'Address': 'Mumbai, India'
|
| 44 |
+
}}
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 48 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 51 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
|
| 53 |
+
return response
|
| 54 |
+
|
| 55 |
+
# Process PDF list and build DataFrame
|
| 56 |
+
def create_docs(user_pdf_list):
|
| 57 |
+
df = pd.DataFrame(columns=[
|
| 58 |
+
'Invoice no.', 'Description', 'Quantity', 'Date',
|
| 59 |
+
'Unit price', 'Amount', 'Total', 'Email',
|
| 60 |
+
'Phone number', 'Address'
|
| 61 |
+
])
|
| 62 |
+
|
| 63 |
+
for file in user_pdf_list:
|
| 64 |
+
raw_text = get_pdf_text(file)
|
| 65 |
+
llm_output = extracted_data(raw_text)
|
| 66 |
+
|
| 67 |
+
# Try extracting JSON-like data from output
|
| 68 |
+
pattern = r'{(.+)}'
|
| 69 |
+
match = re.search(pattern, llm_output, re.DOTALL)
|
| 70 |
+
if match:
|
| 71 |
+
extracted = match.group(1)
|
| 72 |
+
try:
|
| 73 |
+
data_dict = eval("{" + extracted + "}")
|
| 74 |
+
df = df.append([data_dict], ignore_index=True)
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print("Parsing error:", e)
|
| 77 |
+
else:
|
| 78 |
+
print("Model response format issue.")
|
| 79 |
+
|
| 80 |
+
return df
|
| 81 |
+
|
| 82 |
+
def main():
|
| 83 |
+
st.set_page_config(page_title="Invoice Extraction Bot")
|
| 84 |
+
st.title("Invoice Extraction Bot 🤖")
|
| 85 |
+
st.subheader("Upload your PDF invoices to extract key information!")
|
| 86 |
+
|
| 87 |
+
pdf_files = st.file_uploader("Upload PDF invoices", type=["pdf"], accept_multiple_files=True)
|
| 88 |
+
submit = st.button("Extract Data")
|
| 89 |
+
|
| 90 |
+
if submit and pdf_files:
|
| 91 |
+
with st.spinner("Extracting data from invoices..."):
|
| 92 |
+
df = create_docs(pdf_files)
|
| 93 |
+
st.write(df)
|
| 94 |
+
|
| 95 |
+
if not df.empty:
|
| 96 |
+
csv_data = df.to_csv(index=False).encode("utf-8")
|
| 97 |
+
st.download_button(
|
| 98 |
+
"Download CSV",
|
| 99 |
+
csv_data,
|
| 100 |
+
"invoice_data.csv",
|
| 101 |
+
"text/csv",
|
| 102 |
+
key="download-csv"
|
| 103 |
+
)
|
| 104 |
+
st.success("Data extraction completed! 🎉")
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
main()
|