Bertug1911's picture
Update app.py
fdcd1a4 verified
raw
history blame
4.5 kB
import subprocess
import sys
import time
from collections import defaultdict, deque
# Otomatik kurulum
def install_and_import(package):
try:
__import__(package)
except ImportError:
print(f"{package} is not installed, installing...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install_and_import("gradio")
install_and_import("transformers")
install_and_import("torch")
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# === RATE LIMIT ===
click_logs = defaultdict(lambda: {"minute": deque(), "hour": deque(), "day": deque()})
LIMITS = {"minute": (15, 60), "hour": (100, 3600), "day": (1500, 86400)}
def check_rate_limit(session_id):
now = time.time()
logs = click_logs[session_id]
remaining, reset_times = {}, {}
for key, (limit, interval) in LIMITS.items():
# Geçmiş istekleri temizle
while logs[key] and now - logs[key][0] > interval:
logs[key].popleft()
used = len(logs[key])
remaining[key] = max(0, limit - used)
reset_times[key] = int(interval - (now - logs[key][0]) if logs[key] else interval)
if used >= limit:
return False, f"⛔ {key.capitalize()} rate limit exceeded ({limit}/{key})", remaining, reset_times
# Limit aşılmadıysa log'a şimdi ekle
for key in LIMITS:
logs[key].append(now)
return True, None, remaining, reset_times
# === CHAT ÜRETİM FONKSİYONU ===
def extract_response_between_tokens(text: str) -> str:
start = "<|im_start|>assistant<|im_sep|>"
end = "<|im_end|>"
try:
return text.split(start)[1].split(end)[0]
except Exception:
return text
# Model yükleme
model_name = "Bertug1911/BrtGPT-1-Pre"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Özel token ID
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
# Üretim fonksiyonu chat_generate
def chat_generate(prompt, temperature, top_k, max_new_tokens, session_id):
ok, msg, rem, resets = check_rate_limit(session_id)
if not ok:
return msg, format_status(rem, resets)
# Jinja chat format
messages = [{"role": "user", "content": prompt}]
formatted = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(formatted, return_tensors="pt").to(device)
gen = inputs["input_ids"]
# Döngüsel üretim
for _ in range(int(max_new_tokens)):
out = model(gen)
logits = out.logits[:, -1, :] / float(temperature)
if int(top_k) > 0:
vals, idxs = torch.topk(logits, int(top_k))
filt = torch.full_like(logits, float('-inf'))
filt.scatter_(1, idxs, vals)
logits = filt
probs = torch.softmax(logits, dim=-1)
nxt = torch.multinomial(probs, num_samples=1)
gen = torch.cat([gen, nxt], dim=1)
if nxt.item() == im_end_id:
break
out_text = tokenizer.decode(gen[0], skip_special_tokens=False)
# Format düzeltme
no_sp = out_text.replace(" ", "").replace("Ġ", " ")
formatted_out = no_sp.replace("Ċ", "\n")
if not formatted_out.strip().endswith("<|im_end|>"):
formatted_out += "<|im_end|>"
resp = extract_response_between_tokens(formatted_out)
return resp, format_status(rem, resets)
# Durum metni formatlama
def format_status(rem, resets):
return "\n".join([f"🕒 {k.capitalize()}: {rem[k]} left — resets in {resets[k]} sec" for k in ["minute","hour","day"]])
# === UI ===
with gr.Blocks() as app:
session_id = gr.State(str(time.time()))
gr.Markdown("""
# 🤖 BrtGPT-1-Pre
""" )
with gr.Row():
prompt = gr.Textbox(lines=3, placeholder="Enter your message...", label="Prompt")
output = gr.Textbox(label="Response")
with gr.Row():
temperature = gr.Slider(0.01,1.0,value=0.5,step=0.01,label="Temperature")
top_k = gr.Slider(1,50,value=10,step=1,label="Top-K")
max_new_tokens = gr.Slider(1,128,value=15,step=1,label="Max New Tokens")
generate_button = gr.Button("Generate")
status = gr.Markdown()
generate_button.click(
fn=chat_generate,
inputs=[prompt, temperature, top_k, max_new_tokens, session_id],
outputs=[output, status]
)
app.launch()