File size: 5,083 Bytes
e2f99d5 c014c84 e2f99d5 75b1563 e2f99d5 83c2afb e2f99d5 83c2afb e2f99d5 83c2afb e2f99d5 c014c84 83c2afb c014c84 e2f99d5 c014c84 e2f99d5 c014c84 e2f99d5 c014c84 e2f99d5 83c2afb e2f99d5 83c2afb e2f99d5 85f0ffb e2f99d5 c014c84 e2f99d5 c014c84 e2f99d5 c014c84 0edeb0a c014c84 e2a45a4 c014c84 505764d c014c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from PIL import Image
import tempfile
import os
from IndicPhotoOCR.ocr import OCR # Ensure OCR class is saved in a file named ocr.py
from IndicPhotoOCR.theme import Seafoam
from IndicPhotoOCR.utils.helper import detect_para
# Possible values for identifier_lang
VALID_IDENTIFIER_LANGS = ["hindi", "assamese", "bengali", "gujarati", "kannada", "malayalam","odia", "punjabi", "tamil", "telugu", "auto"] # Add more as needed
def process_image(image, identifier_lang):
"""
Processes the uploaded image for text detection and recognition.
- Detects bounding boxes in the image
- Draws bounding boxes on the image and identifies script in each detected area
- Recognizes text in each cropped region and returns the annotated image and recognized text
Parameters:
image (PIL.Image): The input image to be processed.
identifier_lang (str): The script identifier model to use.
Returns:
tuple: A PIL.Image with bounding boxes and a string of recognized text.
"""
# Save the input image temporarily
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_input:
image.save(temp_input.name)
image_path = temp_input.name
# Initialize OCR with the selected identifier language
ocr = OCR(identifier_lang=identifier_lang, verbose=False)
# Detect bounding boxes on the image using OCR
detections = ocr.detect(image_path)
output_path = tempfile.NamedTemporaryFile(suffix=".png", delete=False).name
# Draw bounding boxes on the image and save it as output
ocr.visualize_detection(image_path, detections, save_path=output_path)
# Load the annotated image with bounding boxes drawn
output_image = Image.open(output_path)
# Recognize text from the detected areas
recognized_text = ocr.ocr(image_path)
recognized_text = '\n'.join([' '.join(line) for line in recognized_text])
return output_image, recognized_text
# Custom HTML for interface header with logos and alignment
interface_html = """
<div style="text-align: left; padding: 10px;">
<div style="background-color: white; padding: 10px; display: inline-block;">
<img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;">
</div>
<img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;">
</div>
"""
# Links to GitHub and Dataset repositories with GitHub icon
links_html = """
<div style="text-align: center; padding-top: 20px;">
<a href="https://github.com/Bhashini-IITJ/IndicPhotoOCR" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;">
GitHub Repository
</a>
<a href="https://github.com/Bhashini-IITJ/BharatSceneTextDataset" target="_blank" style="font-size: 18px; text-decoration: none;">
Dataset Repository
</a>
</div>
"""
# Custom CSS to style the text box and center the title
custom_css = """
.custom-textbox textarea {
font-size: 20px !important;
}
#title {
text-align: center;
font-size: 28px;
font-weight: bold;
margin-bottom: 20px;
}
"""
# Create an instance of the Seafoam theme for a consistent visual style
seafoam = Seafoam()
# Clear function
def clear_inputs():
return None, "auto", None, ""
# Define the Gradio Blocks interface
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
gr.Markdown("# IndicPhotoOCR - Indic Scene Text Recogniser Toolkit", elem_id="title")
gr.Markdown("# Developed by IIT Jodhpur", elem_id="title")
gr.Markdown(interface_html + links_html)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", image_mode="RGB", label="Upload Image")
lang_dropdown = gr.Dropdown(VALID_IDENTIFIER_LANGS, label="Identifier Language", value="auto")
run_button = gr.Button("Run OCR")
clear_button = gr.Button("Clear", variant="stop") # Added Clear Button
with gr.Column():
output_image = gr.Image(type="pil", label="Processed Image")
output_text = gr.Textbox(label="Recognized Text", lines=10, elem_classes="custom-textbox")
# Examples shown separately (to avoid schema error)
gr.Examples(
examples=[["test_images/image_88.jpg", "auto"],
["test_images/image_742.jpg", "hindi"]],
inputs=[input_image, lang_dropdown],
label="Try an example"
)
# Connect logic
run_button.click(fn=process_image, inputs=[input_image, lang_dropdown], outputs=[output_image, output_text])
clear_button.click(fn=clear_inputs, outputs=[input_image, lang_dropdown, output_image, output_text]) # Clear logic
# Launch
demo.launch(share=True)
# # 👇 Local server launch config
# if __name__ == "__main__":
# demo.launch(
# server_name="0.0.0.0",
# server_port=7866,
# share=False
# )
|