|
import gradio as gr |
|
from PIL import Image |
|
import os |
|
from IndicPhotoOCR.ocr import OCR |
|
from IndicPhotoOCR.theme import Seafoam |
|
|
|
|
|
ocr = OCR(device="cpu", verbose=False) |
|
|
|
def process_image(image): |
|
""" |
|
Processes the uploaded image for text detection and recognition. |
|
- Detects bounding boxes in the image |
|
- Draws bounding boxes on the image and identifies script in each detected area |
|
- Recognizes text in each cropped region and returns the annotated image and recognized text |
|
|
|
Parameters: |
|
image (PIL.Image): The input image to be processed. |
|
|
|
Returns: |
|
tuple: A PIL.Image with bounding boxes and a string of recognized text. |
|
""" |
|
|
|
|
|
image_path = "input_image.jpg" |
|
image.save(image_path) |
|
|
|
|
|
detections = ocr.detect(image_path) |
|
|
|
|
|
ocr.visualize_detection(image_path, detections, save_path="output_image.png") |
|
|
|
|
|
output_image = Image.open("output_image.png") |
|
|
|
|
|
recognized_texts = [] |
|
pil_image = Image.open(image_path) |
|
|
|
|
|
for bbox in detections: |
|
|
|
script_lang, cropped_path = ocr.crop_and_identify_script(pil_image, bbox) |
|
|
|
if script_lang: |
|
|
|
recognized_text = ocr.recognise(cropped_path, script_lang) |
|
recognized_texts.append(recognized_text) |
|
|
|
|
|
recognized_texts_combined = " ".join(recognized_texts) |
|
return output_image, recognized_texts_combined |
|
|
|
|
|
interface_html = """ |
|
<div style="text-align: left; padding: 10px;"> |
|
<div style="background-color: white; padding: 10px; display: inline-block;"> |
|
<img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;"> |
|
</div> |
|
<img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;"> |
|
</div> |
|
""" |
|
|
|
|
|
|
|
|
|
links_html = """ |
|
<div style="text-align: center; padding-top: 20px;"> |
|
<a href="https://github.com/Bhashini-IITJ/BharatOCR" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;"> |
|
GitHub Repository |
|
</a> |
|
<a href="https://github.com/Bhashini-IITJ/BharatSceneTextDataset" target="_blank" style="font-size: 18px; text-decoration: none;"> |
|
Dataset Repository |
|
</a> |
|
</div> |
|
""" |
|
|
|
|
|
custom_css = """ |
|
.custom-textbox textarea { |
|
font-size: 20px !important; |
|
} |
|
""" |
|
|
|
|
|
seafoam = Seafoam() |
|
|
|
|
|
examples = [ |
|
["test_images/image_141.jpg"], |
|
["test_images/image_1164.jpg"] |
|
] |
|
|
|
title = "<h1 style='text-align: center;'>Developed by IITJ</h1>" |
|
|
|
|
|
demo = gr.Interface( |
|
fn=process_image, |
|
inputs=gr.Image(type="pil", image_mode="RGB"), |
|
outputs=[ |
|
gr.Image(type="pil", label="Detected Bounding Boxes"), |
|
gr.Textbox(label="Recognized Text", elem_classes="custom-textbox") |
|
], |
|
title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit", |
|
description=title+interface_html+links_html, |
|
theme=seafoam, |
|
css=custom_css, |
|
examples=examples |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
server = "0.0.0.0" |
|
port = 7865 |
|
demo.launch(server_name=server, server_port=port) |
|
|
|
|
|
|