Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,443 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# from huggingface_hub import InferenceClient
|
| 3 |
-
|
| 4 |
-
# """
|
| 5 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
# """
|
| 7 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# def respond(
|
| 11 |
-
# message,
|
| 12 |
-
# history: list[tuple[str, str]],
|
| 13 |
-
# system_message,
|
| 14 |
-
# max_tokens,
|
| 15 |
-
# temperature,
|
| 16 |
-
# top_p,
|
| 17 |
-
# ):
|
| 18 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
# for val in history:
|
| 21 |
-
# if val[0]:
|
| 22 |
-
# messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
# if val[1]:
|
| 24 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
# messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
-
# response = ""
|
| 29 |
-
|
| 30 |
-
# for message in client.chat_completion(
|
| 31 |
-
# messages,
|
| 32 |
-
# max_tokens=max_tokens,
|
| 33 |
-
# stream=True,
|
| 34 |
-
# temperature=temperature,
|
| 35 |
-
# top_p=top_p,
|
| 36 |
-
# ):
|
| 37 |
-
# token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
# response += token
|
| 40 |
-
# yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# """
|
| 44 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
# """
|
| 46 |
-
# demo = gr.ChatInterface(
|
| 47 |
-
# respond,
|
| 48 |
-
# additional_inputs=[
|
| 49 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
# gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
|
| 51 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
# gr.Slider(
|
| 53 |
-
# minimum=0.1,
|
| 54 |
-
# maximum=1.0,
|
| 55 |
-
# value=0.95,
|
| 56 |
-
# step=0.05,
|
| 57 |
-
# label="Top-p (nucleus sampling)",
|
| 58 |
-
# ),
|
| 59 |
-
# ],
|
| 60 |
-
# )
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# if __name__ == "__main__":
|
| 64 |
-
# demo.launch()
|
| 65 |
-
|
| 66 |
-
# import gradio as gr
|
| 67 |
-
# from huggingface_hub import InferenceClient
|
| 68 |
-
|
| 69 |
-
"""
|
| 70 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 71 |
-
"""
|
| 72 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 73 |
-
|
| 74 |
-
# def respond(message, history: list[tuple[str, str]]):
|
| 75 |
-
# system_message = (
|
| 76 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 77 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 78 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
|
| 79 |
-
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses.")
|
| 80 |
-
# max_tokens = 2048
|
| 81 |
-
# temperature = 0.7
|
| 82 |
-
# top_p = 0.95
|
| 83 |
-
|
| 84 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 85 |
-
|
| 86 |
-
# for val in history:
|
| 87 |
-
# if val[0]:
|
| 88 |
-
# messages.append({"role": "user", "content": val[0]})
|
| 89 |
-
# if val[1]:
|
| 90 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
| 91 |
-
|
| 92 |
-
# messages.append({"role": "user", "content": message})
|
| 93 |
-
|
| 94 |
-
# response = ""
|
| 95 |
-
|
| 96 |
-
# for message in client.chat_completion(
|
| 97 |
-
# messages,
|
| 98 |
-
# max_tokens=max_tokens,
|
| 99 |
-
# stream=True,
|
| 100 |
-
# temperature=temperature,
|
| 101 |
-
# top_p=top_p,
|
| 102 |
-
# ):
|
| 103 |
-
# token = message.choices[0].delta.content
|
| 104 |
-
|
| 105 |
-
# response += token
|
| 106 |
-
# yield response
|
| 107 |
-
|
| 108 |
-
# """
|
| 109 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 110 |
-
# """
|
| 111 |
-
# demo = gr.ChatInterface(respond)
|
| 112 |
-
|
| 113 |
-
# if __name__ == "__main__":
|
| 114 |
-
# demo.launch()
|
| 115 |
-
|
| 116 |
-
# import gradio as gr
|
| 117 |
-
# from huggingface_hub import InferenceClient
|
| 118 |
-
|
| 119 |
-
# """
|
| 120 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 121 |
-
# """
|
| 122 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 123 |
-
|
| 124 |
-
# def respond(message, history: list[tuple[str, str]]):
|
| 125 |
-
# system_message = (
|
| 126 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 127 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 128 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
|
| 129 |
-
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses."
|
| 130 |
-
# )
|
| 131 |
-
# max_tokens = 2048
|
| 132 |
-
# temperature = 0.7
|
| 133 |
-
# top_p = 0.95
|
| 134 |
-
|
| 135 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 136 |
-
|
| 137 |
-
# for val in history:
|
| 138 |
-
# if val[0]:
|
| 139 |
-
# messages.append({"role": "user", "content": val[0]})
|
| 140 |
-
# if val[1]:
|
| 141 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
| 142 |
-
|
| 143 |
-
# messages.append({"role": "user", "content": message})
|
| 144 |
-
|
| 145 |
-
# response = ""
|
| 146 |
-
|
| 147 |
-
# for message in client.chat_completion(
|
| 148 |
-
# messages,
|
| 149 |
-
# max_tokens=max_tokens,
|
| 150 |
-
# stream=True,
|
| 151 |
-
# temperature=temperature,
|
| 152 |
-
# top_p=top_p,
|
| 153 |
-
# ):
|
| 154 |
-
# token = message.choices[0].delta.content
|
| 155 |
-
|
| 156 |
-
# response += token
|
| 157 |
-
# yield response
|
| 158 |
-
|
| 159 |
-
# """
|
| 160 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 161 |
-
# """
|
| 162 |
-
# demo = gr.ChatInterface(respond)
|
| 163 |
-
|
| 164 |
-
# if __name__ == "__main__":
|
| 165 |
-
# demo.launch()
|
| 166 |
-
|
| 167 |
-
# import gradio as gr
|
| 168 |
-
# from huggingface_hub import InferenceClient
|
| 169 |
-
|
| 170 |
-
# # 1. Instantiate with named model param
|
| 171 |
-
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 172 |
-
|
| 173 |
-
# def respond(message, history: list[tuple[str, str]]):
|
| 174 |
-
# system_message = (
|
| 175 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 176 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 177 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 178 |
-
# "based on their requirements."
|
| 179 |
-
# )
|
| 180 |
-
# max_tokens = 2048
|
| 181 |
-
# temperature = 0.7
|
| 182 |
-
# top_p = 0.95
|
| 183 |
-
|
| 184 |
-
# # Build messages in OpenAI-compatible format
|
| 185 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 186 |
-
# for user_msg, assistant_msg in history:
|
| 187 |
-
# if user_msg:
|
| 188 |
-
# messages.append({"role": "user", "content": user_msg})
|
| 189 |
-
# if assistant_msg:
|
| 190 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
| 191 |
-
# messages.append({"role": "user", "content": message})
|
| 192 |
-
|
| 193 |
-
# response = ""
|
| 194 |
-
# # 2. Use named parameters and alias if desired
|
| 195 |
-
# for chunk in client.chat.completions.create(
|
| 196 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 197 |
-
# messages=messages,
|
| 198 |
-
# max_tokens=max_tokens,
|
| 199 |
-
# stream=True,
|
| 200 |
-
# temperature=temperature,
|
| 201 |
-
# top_p=top_p,
|
| 202 |
-
# ):
|
| 203 |
-
# # 3. Extract token content
|
| 204 |
-
# token = chunk.choices[0].delta.content or ""
|
| 205 |
-
# response += token
|
| 206 |
-
# yield response
|
| 207 |
-
|
| 208 |
-
# # 4. Wire up Gradio chat interface
|
| 209 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
| 210 |
-
|
| 211 |
-
# if __name__ == "__main__":
|
| 212 |
-
# demo.launch()
|
| 213 |
-
# import gradio as gr
|
| 214 |
-
# from huggingface_hub import InferenceClient
|
| 215 |
-
|
| 216 |
-
# hf_token = "HF_TOKEN"
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
# # Ensure token is available
|
| 220 |
-
# if hf_token is None:
|
| 221 |
-
# raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.")
|
| 222 |
-
|
| 223 |
-
# # Instantiate Hugging Face Inference Client with token
|
| 224 |
-
# client = InferenceClient(
|
| 225 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 226 |
-
# token=hf_token
|
| 227 |
-
# )
|
| 228 |
-
|
| 229 |
-
# def respond(message, history: list[tuple[str, str]]):
|
| 230 |
-
# system_message = (
|
| 231 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 232 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 233 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 234 |
-
# "based on their requirements."
|
| 235 |
-
# )
|
| 236 |
-
# max_tokens = 2048
|
| 237 |
-
# temperature = 0.7
|
| 238 |
-
# top_p = 0.95
|
| 239 |
-
|
| 240 |
-
# # Build conversation history
|
| 241 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 242 |
-
# for user_msg, assistant_msg in history:
|
| 243 |
-
# if user_msg:
|
| 244 |
-
# messages.append({"role": "user", "content": user_msg})
|
| 245 |
-
# if assistant_msg:
|
| 246 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
| 247 |
-
# messages.append({"role": "user", "content": message})
|
| 248 |
-
|
| 249 |
-
# response = ""
|
| 250 |
-
# # Stream the response from the model
|
| 251 |
-
# for chunk in client.chat.completions.create(
|
| 252 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 253 |
-
# messages=messages,
|
| 254 |
-
# max_tokens=max_tokens,
|
| 255 |
-
# stream=True,
|
| 256 |
-
# temperature=temperature,
|
| 257 |
-
# top_p=top_p,
|
| 258 |
-
# ):
|
| 259 |
-
# token = chunk.choices[0].delta.content or ""
|
| 260 |
-
# response += token
|
| 261 |
-
# yield response
|
| 262 |
-
|
| 263 |
-
# # Gradio UI
|
| 264 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
| 265 |
-
|
| 266 |
-
# if __name__ == "__main__":
|
| 267 |
-
# demo.launch()
|
| 268 |
-
|
| 269 |
-
# import gradio as gr
|
| 270 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 271 |
-
# import torch
|
| 272 |
-
|
| 273 |
-
# # Load once globally
|
| 274 |
-
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 275 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
| 276 |
-
# "Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 277 |
-
# device_map="auto",
|
| 278 |
-
# torch_dtype=torch.float16,
|
| 279 |
-
# )
|
| 280 |
-
|
| 281 |
-
# def respond(message, history):
|
| 282 |
-
# system_prompt = (
|
| 283 |
-
# "You are a helpful coding assistant specialized in web development. "
|
| 284 |
-
# "Provide complete code snippets for HTML, CSS, JS, Flask, Node.js etc."
|
| 285 |
-
# )
|
| 286 |
-
# # Build input prompt including chat history
|
| 287 |
-
# chat_history = ""
|
| 288 |
-
# for user_msg, bot_msg in history:
|
| 289 |
-
# chat_history += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
| 290 |
-
# prompt = f"{system_prompt}\n{chat_history}User: {message}\nAssistant:"
|
| 291 |
-
|
| 292 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 293 |
-
# outputs = model.generate(
|
| 294 |
-
# **inputs,
|
| 295 |
-
# max_new_tokens=512,
|
| 296 |
-
# temperature=0.7,
|
| 297 |
-
# do_sample=True,
|
| 298 |
-
# top_p=0.95,
|
| 299 |
-
# eos_token_id=tokenizer.eos_token_id,
|
| 300 |
-
# )
|
| 301 |
-
# generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 302 |
-
|
| 303 |
-
# # Extract only the new response part after the prompt
|
| 304 |
-
# response = generated_text[len(prompt):].strip()
|
| 305 |
-
|
| 306 |
-
# # Append current Q/A to history
|
| 307 |
-
# history.append((message, response))
|
| 308 |
-
# return "", history
|
| 309 |
-
|
| 310 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
| 311 |
-
|
| 312 |
-
# if __name__ == "__main__":
|
| 313 |
-
# demo.launch()
|
| 314 |
-
# import os
|
| 315 |
-
# import gradio as gr
|
| 316 |
-
# from huggingface_hub import InferenceClient
|
| 317 |
-
# from dotenv import load_dotenv
|
| 318 |
-
|
| 319 |
-
# # Load .env variables (make sure to have HF_TOKEN in .env or set as env var)
|
| 320 |
-
# load_dotenv()
|
| 321 |
-
# HF_TOKEN = os.getenv("HF_TOKEN") # or directly assign your token here as string
|
| 322 |
-
|
| 323 |
-
# # Initialize InferenceClient with Hugging Face API token
|
| 324 |
-
# client = InferenceClient(
|
| 325 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
| 326 |
-
# token=HF_TOKEN
|
| 327 |
-
# )
|
| 328 |
-
|
| 329 |
-
# def respond(message, history):
|
| 330 |
-
# """
|
| 331 |
-
# Chat response generator function streaming from Hugging Face Inference API.
|
| 332 |
-
# """
|
| 333 |
-
# system_message = (
|
| 334 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 335 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 336 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 337 |
-
# "based on their requirements."
|
| 338 |
-
# )
|
| 339 |
-
# max_tokens = 2048
|
| 340 |
-
# temperature = 0.7
|
| 341 |
-
# top_p = 0.95
|
| 342 |
-
|
| 343 |
-
# # Prepare messages in OpenAI chat format
|
| 344 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 345 |
-
# for user_msg, assistant_msg in history:
|
| 346 |
-
# if user_msg:
|
| 347 |
-
# messages.append({"role": "user", "content": user_msg})
|
| 348 |
-
# if assistant_msg:
|
| 349 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
| 350 |
-
# messages.append({"role": "user", "content": message})
|
| 351 |
-
|
| 352 |
-
# response = ""
|
| 353 |
-
# # Stream response tokens from Hugging Face Inference API
|
| 354 |
-
# for chunk in client.chat.completions.create(
|
| 355 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
| 356 |
-
# messages=messages,
|
| 357 |
-
# max_tokens=max_tokens,
|
| 358 |
-
# stream=True,
|
| 359 |
-
# temperature=temperature,
|
| 360 |
-
# top_p=top_p,
|
| 361 |
-
# ):
|
| 362 |
-
# token = chunk.choices[0].delta.get("content", "")
|
| 363 |
-
# response += token
|
| 364 |
-
# yield response
|
| 365 |
-
|
| 366 |
-
# # Create Gradio chat interface
|
| 367 |
-
# demo = gr.ChatInterface(fn=respond, title="Website Building Assistant")
|
| 368 |
-
|
| 369 |
-
# if __name__ == "__main__":
|
| 370 |
-
# demo.launch()
|
| 371 |
-
# import os
|
| 372 |
-
# import gradio as gr
|
| 373 |
-
# from huggingface_hub import InferenceClient
|
| 374 |
-
# from dotenv import load_dotenv
|
| 375 |
-
|
| 376 |
-
# # Load environment variables
|
| 377 |
-
# load_dotenv()
|
| 378 |
-
# HF_TOKEN = os.getenv("HF_TOKEN") # Ensure this is set in .env
|
| 379 |
-
|
| 380 |
-
# # Initialize Hugging Face Inference Client
|
| 381 |
-
# client = InferenceClient(
|
| 382 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
| 383 |
-
# token=HF_TOKEN
|
| 384 |
-
# )
|
| 385 |
-
|
| 386 |
-
# # Define system instructions for the chatbot
|
| 387 |
-
# system_message = (
|
| 388 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 389 |
-
# "Help the user by generating complete and functional code for building websites. "
|
| 390 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 391 |
-
# "based on their requirements."
|
| 392 |
-
# )
|
| 393 |
-
|
| 394 |
-
# # Define the response generation function
|
| 395 |
-
# def respond(message, history):
|
| 396 |
-
# max_tokens = 2048
|
| 397 |
-
# temperature = 0.7
|
| 398 |
-
# top_p = 0.95
|
| 399 |
-
|
| 400 |
-
# # Convert chat history into OpenAI-style format
|
| 401 |
-
# messages = [{"role": "system", "content": system_message}]
|
| 402 |
-
# for item in history:
|
| 403 |
-
# role = item["role"]
|
| 404 |
-
# content = item["content"]
|
| 405 |
-
# messages.append({"role": role, "content": content})
|
| 406 |
-
|
| 407 |
-
# # Add the latest user message
|
| 408 |
-
# messages.append({"role": "user", "content": message})
|
| 409 |
-
|
| 410 |
-
# response = ""
|
| 411 |
-
|
| 412 |
-
# # Streaming response from the Hugging Face Inference API
|
| 413 |
-
# for chunk in client.chat.completions.create(
|
| 414 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
| 415 |
-
# messages=messages,
|
| 416 |
-
# max_tokens=max_tokens,
|
| 417 |
-
# stream=True,
|
| 418 |
-
# temperature=temperature,
|
| 419 |
-
# top_p=top_p,
|
| 420 |
-
# ):
|
| 421 |
-
# token = chunk.choices[0].delta.get("content")
|
| 422 |
-
# if token is not None:
|
| 423 |
-
# response += token
|
| 424 |
-
# yield response
|
| 425 |
-
|
| 426 |
-
# # Create Gradio Chat Interface
|
| 427 |
-
# demo = gr.ChatInterface(
|
| 428 |
-
# fn=respond,
|
| 429 |
-
# title="Website Building Assistant",
|
| 430 |
-
# chatbot=gr.Chatbot(show_label=False),
|
| 431 |
-
# type="openai", # Use OpenAI-style message format
|
| 432 |
-
# )
|
| 433 |
-
|
| 434 |
-
# if __name__ == "__main__":
|
| 435 |
-
# demo.launch()# app.py
|
| 436 |
-
|
| 437 |
-
# app.py
|
| 438 |
-
|
| 439 |
-
# app.py
|
| 440 |
-
|
| 441 |
# import os
|
| 442 |
# import gradio as gr
|
| 443 |
# from huggingface_hub import InferenceClient
|
|
@@ -449,7 +9,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 449 |
|
| 450 |
# # Initialize Hugging Face Inference Client
|
| 451 |
# client = InferenceClient(
|
| 452 |
-
# model="mistralai/
|
| 453 |
# token=HF_TOKEN
|
| 454 |
# )
|
| 455 |
|
|
@@ -461,7 +21,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 461 |
# "based on their requirements."
|
| 462 |
# )
|
| 463 |
|
| 464 |
-
# # Streaming chatbot logic
|
| 465 |
# def respond(message, history):
|
| 466 |
# # Prepare messages with system prompt
|
| 467 |
# messages = [{"role": "system", "content": system_message}]
|
|
@@ -472,7 +32,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 472 |
# # Stream response from the model
|
| 473 |
# response = ""
|
| 474 |
# for chunk in client.chat.completions.create(
|
| 475 |
-
# model="mistralai/
|
| 476 |
# messages=messages,
|
| 477 |
# max_tokens=1024,
|
| 478 |
# temperature=0.7,
|
|
@@ -492,9 +52,6 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 492 |
# if __name__ == "__main__":
|
| 493 |
# demo.launch()
|
| 494 |
|
| 495 |
-
|
| 496 |
-
# app.py
|
| 497 |
-
|
| 498 |
import os
|
| 499 |
import gradio as gr
|
| 500 |
from huggingface_hub import InferenceClient
|
|
@@ -506,7 +63,7 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 506 |
|
| 507 |
# Initialize Hugging Face Inference Client
|
| 508 |
client = InferenceClient(
|
| 509 |
-
model="
|
| 510 |
token=HF_TOKEN
|
| 511 |
)
|
| 512 |
|
|
@@ -522,21 +79,27 @@ system_message = (
|
|
| 522 |
def respond(message, history):
|
| 523 |
# Prepare messages with system prompt
|
| 524 |
messages = [{"role": "system", "content": system_message}]
|
| 525 |
-
for
|
| 526 |
-
messages.append(
|
|
|
|
| 527 |
messages.append({"role": "user", "content": message})
|
| 528 |
|
| 529 |
# Stream response from the model
|
| 530 |
response = ""
|
| 531 |
for chunk in client.chat.completions.create(
|
| 532 |
-
model="
|
| 533 |
messages=messages,
|
| 534 |
-
max_tokens=
|
| 535 |
temperature=0.7,
|
| 536 |
top_p=0.95,
|
| 537 |
stream=True,
|
| 538 |
):
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
response += token
|
| 541 |
yield response
|
| 542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# import os
|
| 2 |
# import gradio as gr
|
| 3 |
# from huggingface_hub import InferenceClient
|
|
|
|
| 9 |
|
| 10 |
# # Initialize Hugging Face Inference Client
|
| 11 |
# client = InferenceClient(
|
| 12 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
| 13 |
# token=HF_TOKEN
|
| 14 |
# )
|
| 15 |
|
|
|
|
| 21 |
# "based on their requirements."
|
| 22 |
# )
|
| 23 |
|
| 24 |
+
# # Streaming chatbot logic
|
| 25 |
# def respond(message, history):
|
| 26 |
# # Prepare messages with system prompt
|
| 27 |
# messages = [{"role": "system", "content": system_message}]
|
|
|
|
| 32 |
# # Stream response from the model
|
| 33 |
# response = ""
|
| 34 |
# for chunk in client.chat.completions.create(
|
| 35 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
| 36 |
# messages=messages,
|
| 37 |
# max_tokens=1024,
|
| 38 |
# temperature=0.7,
|
|
|
|
| 52 |
# if __name__ == "__main__":
|
| 53 |
# demo.launch()
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
import os
|
| 56 |
import gradio as gr
|
| 57 |
from huggingface_hub import InferenceClient
|
|
|
|
| 63 |
|
| 64 |
# Initialize Hugging Face Inference Client
|
| 65 |
client = InferenceClient(
|
| 66 |
+
model="Qwen/Qwen2.5-Coder-7B-Instruct",
|
| 67 |
token=HF_TOKEN
|
| 68 |
)
|
| 69 |
|
|
|
|
| 79 |
def respond(message, history):
|
| 80 |
# Prepare messages with system prompt
|
| 81 |
messages = [{"role": "system", "content": system_message}]
|
| 82 |
+
for user_msg, assistant_msg in history:
|
| 83 |
+
messages.append({"role": "user", "content": user_msg})
|
| 84 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 85 |
messages.append({"role": "user", "content": message})
|
| 86 |
|
| 87 |
# Stream response from the model
|
| 88 |
response = ""
|
| 89 |
for chunk in client.chat.completions.create(
|
| 90 |
+
model="Qwen/Qwen2.5-Coder-7B-Instruct",
|
| 91 |
messages=messages,
|
| 92 |
+
max_tokens=2048,
|
| 93 |
temperature=0.7,
|
| 94 |
top_p=0.95,
|
| 95 |
stream=True,
|
| 96 |
):
|
| 97 |
+
# Safely handle empty choices
|
| 98 |
+
if not chunk.choices:
|
| 99 |
+
continue
|
| 100 |
+
|
| 101 |
+
# Safely extract token content
|
| 102 |
+
token = chunk.choices[0].delta.content or ""
|
| 103 |
response += token
|
| 104 |
yield response
|
| 105 |
|