Spaces:
Runtime error
Runtime error
File size: 4,878 Bytes
eb047e2 7e2624b eb047e2 7e2624b 8db4600 eb047e2 7e2624b eb047e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from tensorflow_docs.vis import embed
from tensorflow import keras
from imutils import paths
import tensorflow as tf
import pandas as pd
import numpy as np
import imageio
import cv2
import os
from tensorflow.keras.models import model_from_json
import numpy
import gradio as gr
from googletrans import Translator
translator = Translator()
train_df = pd.read_csv("train.csv")
label_processor = keras.layers.StringLookup(num_oov_indices=0, vocabulary=np.unique(train_df["tag"]))
print(label_processor.get_vocabulary())
labels = train_df["tag"].values
labels = label_processor(labels[..., None]).numpy()
IMG_SIZE = 224
BATCH_SIZE = 64
EPOCHS = 100
MAX_SEQ_LENGTH = 20
NUM_FEATURES = 2048
json_file = open('model.json', 'r')
sequence_model_json = json_file.read()
json_file.close()
sequence_model = model_from_json(sequence_model_json)
# load weights into new model
sequence_model.load_weights("model.h5")
def crop_center_square(frame):
y, x = frame.shape[0:2]
min_dim = min(y, x)
start_x = (x // 2) - (min_dim // 2)
start_y = (y // 2) - (min_dim // 2)
return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]
def load_video(path, max_frames=0, resize=(IMG_SIZE, IMG_SIZE)):
cap = cv2.VideoCapture(path)
frames = []
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = crop_center_square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 0]]
frames.append(frame)
if len(frames) == max_frames:
break
finally:
cap.release()
return np.array(frames)
def create_clips(video_path, interval):
interval=int(interval)
NoOfClips=0
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / fps
for i in range(0, int(duration), interval):
NoOfClips+=1
start_time = i
end_time = min(i+interval, duration)
start_frame = int(start_time * fps)
end_frame = int(end_time * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = f"clip_{NoOfClips}.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
for j in range(start_frame, end_frame):
ret, frame = cap.read()
if ret:
out.write(frame)
else:
break
out.release()
cap.release()
return NoOfClips
def build_feature_extractor():
feature_extractor = keras.applications.InceptionV3(
weights="imagenet",
include_top=False,
pooling="avg",
input_shape=(IMG_SIZE, IMG_SIZE, 3),
)
preprocess_input = keras.applications.inception_v3.preprocess_input
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
preprocessed = preprocess_input(inputs)
outputs = feature_extractor(preprocessed)
return keras.Model(inputs, outputs, name="feature_extractor")
feature_extractor = build_feature_extractor()
def prepare_single_video(frames):
frames = frames[None, ...]
frame_mask = np.zeros(shape=(1, MAX_SEQ_LENGTH,), dtype="bool")
frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
for i, batch in enumerate(frames):
video_length = batch.shape[0]
length = min(MAX_SEQ_LENGTH, video_length)
for j in range(length):
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
frame_mask[i, :length] = 1 # 1 = not masked, 0 = masked
return frame_features, frame_mask
def sequence_prediction(path):
class_vocab = label_processor.get_vocabulary()
frames = load_video(os.path.join("test", path))
frame_features, frame_mask = prepare_single_video(frames)
probabilities = sequence_model.predict([frame_features, frame_mask])[0]
for i in np.argsort(probabilities)[::-1]:
#if probabilities[i]* 100>0.75:
return class_vocab[i]
print(f" {class_vocab[i]}: {probabilities[i] * 100:5.2f}%")
return class_vocab[0]
def SignTotext(video,interval):
NoofClips=create_clips(video,interval)
Text=[]
for i in range(NoofClips):
Text.append(sequence_prediction(f"clip_{i}.mp4"))
EnglishText=" ".join(Text)
translated_text = translator.translate(EnglishText, dest='ur')
return EnglishText,translated_text.text
demo=gr.Interface(fn=SignTotext,
inputs=["video",gr.inputs.Number(label="Enter Duration in which one sign is completed")],
outputs=[gr.inputs.Textbox(label="English Text"),gr.inputs.Textbox(label="Urdu text")],
title="Urdu Sign to Video")
demo.launch(debug=True)
|