Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,165 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from turtle import title
         | 
| 2 | 
            +
            import gradio as gr
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import git
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS')
         | 
| 7 | 
            +
            os.system('pip install -q -e TTS/')
         | 
| 8 | 
            +
            os.system('pip install -q torchaudio==0.9.0')
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import sys
         | 
| 11 | 
            +
            TTS_PATH = "TTS/"
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            # add libraries into environment
         | 
| 14 | 
            +
            sys.path.append(TTS_PATH) # set this if TTS is not installed globally
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import os
         | 
| 17 | 
            +
            import string
         | 
| 18 | 
            +
            import time
         | 
| 19 | 
            +
            import argparse
         | 
| 20 | 
            +
            import json
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import numpy as np
         | 
| 23 | 
            +
            import IPython
         | 
| 24 | 
            +
            from IPython.display import Audio
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            import torch
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from TTS.tts.utils.synthesis import synthesis
         | 
| 30 | 
            +
            #from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
         | 
| 31 | 
            +
            try:
         | 
| 32 | 
            +
              from TTS.utils.audio import AudioProcessor
         | 
| 33 | 
            +
            except:
         | 
| 34 | 
            +
              from TTS.utils.audio import AudioProcessor
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            from TTS.tts.models import setup_model
         | 
| 38 | 
            +
            from TTS.config import load_config
         | 
| 39 | 
            +
            from TTS.tts.models.vits import *  
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            OUT_PATH = 'out/'
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            # create output path
         | 
| 44 | 
            +
            os.makedirs(OUT_PATH, exist_ok=True)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            # model vars 
         | 
| 47 | 
            +
            MODEL_PATH = '/home/user/app/best_model_latest.pth.tar'
         | 
| 48 | 
            +
            CONFIG_PATH = '/home/user/app/config.json'
         | 
| 49 | 
            +
            TTS_LANGUAGES = "/home/user/app/language_ids.json"
         | 
| 50 | 
            +
            TTS_SPEAKERS = "/home/user/app/speakers.json"
         | 
| 51 | 
            +
            USE_CUDA = torch.cuda.is_available()  
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            # load the config
         | 
| 54 | 
            +
            C = load_config(CONFIG_PATH)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            # load the audio processor
         | 
| 58 | 
            +
            ap = AudioProcessor(**C.audio)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            speaker_embedding = None
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            C.model_args['d_vector_file'] = TTS_SPEAKERS
         | 
| 63 | 
            +
            C.model_args['use_speaker_encoder_as_loss'] = False
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            model = setup_model(C)
         | 
| 66 | 
            +
            model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
         | 
| 67 | 
            +
            # print(model.language_manager.num_languages, model.embedded_language_dim)
         | 
| 68 | 
            +
            # print(model.emb_l)
         | 
| 69 | 
            +
            cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
         | 
| 70 | 
            +
            # remove speaker encoder
         | 
| 71 | 
            +
            model_weights = cp['model'].copy()
         | 
| 72 | 
            +
            for key in list(model_weights.keys()):
         | 
| 73 | 
            +
              if "speaker_encoder" in key:
         | 
| 74 | 
            +
                del model_weights[key]
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            model.load_state_dict(model_weights)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            model.eval()
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            if USE_CUDA:
         | 
| 82 | 
            +
                model = model.cuda()
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            # synthesize voice
         | 
| 85 | 
            +
            use_griffin_lim = False
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            os.system('pip install -q pydub ffmpeg-normalize')
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            CONFIG_SE_PATH = "config_se.json"
         | 
| 90 | 
            +
            CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            from TTS.tts.utils.speakers import SpeakerManager
         | 
| 93 | 
            +
            from pydub import AudioSegment
         | 
| 94 | 
            +
            import librosa
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            def compute_spec(ref_file):
         | 
| 99 | 
            +
              y, sr = librosa.load(ref_file, sr=ap.sample_rate)
         | 
| 100 | 
            +
              spec = ap.spectrogram(y)
         | 
| 101 | 
            +
              spec = torch.FloatTensor(spec).unsqueeze(0)
         | 
| 102 | 
            +
              return spec
         | 
| 103 | 
            +
              
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                
         | 
| 106 | 
            +
            def greet(Text,Voicetoclone,VoiceMicrophone):
         | 
| 107 | 
            +
                text= "%s" % (Text)
         | 
| 108 | 
            +
                if Voicetoclone is not None:
         | 
| 109 | 
            +
                  reference_files= "%s" % (Voicetoclone)
         | 
| 110 | 
            +
                  print("path url")
         | 
| 111 | 
            +
                  print(Voicetoclone)
         | 
| 112 | 
            +
                  sample= str(Voicetoclone)
         | 
| 113 | 
            +
                else:
         | 
| 114 | 
            +
                  reference_files= "%s" % (VoiceMicrophone)
         | 
| 115 | 
            +
                  print("path url")
         | 
| 116 | 
            +
                  print(VoiceMicrophone)
         | 
| 117 | 
            +
                  sample= str(VoiceMicrophone)
         | 
| 118 | 
            +
                size= len(reference_files)*sys.getsizeof(reference_files)
         | 
| 119 | 
            +
                size2= size / 1000000
         | 
| 120 | 
            +
                if (size2 > 0.012) or len(text)>2000:
         | 
| 121 | 
            +
                  message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
         | 
| 122 | 
            +
                  print(message)
         | 
| 123 | 
            +
                  raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
         | 
| 124 | 
            +
                else:
         | 
| 125 | 
            +
                  os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f')
         | 
| 126 | 
            +
                  reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files)
         | 
| 127 | 
            +
                  model.length_scale = 1  # scaler for the duration predictor. The larger it is, the slower the speech.
         | 
| 128 | 
            +
                  model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference.
         | 
| 129 | 
            +
                  model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference.
         | 
| 130 | 
            +
                  text = text
         | 
| 131 | 
            +
                  model.language_manager.language_id_mapping
         | 
| 132 | 
            +
                  language_id = 0
         | 
| 133 | 
            +
                
         | 
| 134 | 
            +
                  print(" > text: {}".format(text))
         | 
| 135 | 
            +
                  wav, alignment, _, _ = synthesis(
         | 
| 136 | 
            +
                                    model,
         | 
| 137 | 
            +
                                    text,
         | 
| 138 | 
            +
                                    C,
         | 
| 139 | 
            +
                                    "cuda" in str(next(model.parameters()).device),
         | 
| 140 | 
            +
                                    ap,
         | 
| 141 | 
            +
                                    speaker_id=None,
         | 
| 142 | 
            +
                                    d_vector=reference_emb,
         | 
| 143 | 
            +
                                    style_wav=None,
         | 
| 144 | 
            +
                                    language_id=language_id,
         | 
| 145 | 
            +
                                    enable_eos_bos_chars=C.enable_eos_bos_chars,
         | 
| 146 | 
            +
                                    use_griffin_lim=True,
         | 
| 147 | 
            +
                                    do_trim_silence=False,
         | 
| 148 | 
            +
                                ).values()
         | 
| 149 | 
            +
                  print("Generated Audio")
         | 
| 150 | 
            +
                  IPython.display.display(Audio(wav, rate=ap.sample_rate))
         | 
| 151 | 
            +
                  #file_name = text.replace(" ", "_")
         | 
| 152 | 
            +
                  #file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
         | 
| 153 | 
            +
                  file_name="Audio.wav"
         | 
| 154 | 
            +
                  out_path = os.path.join(OUT_PATH, file_name)
         | 
| 155 | 
            +
                  print(" > Saving output to {}".format(out_path))
         | 
| 156 | 
            +
                  ap.save_wav(wav, out_path)
         | 
| 157 | 
            +
                  return out_path
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            demo = gr.Interface(
         | 
| 160 | 
            +
                fn=greet, 
         | 
| 161 | 
            +
                inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),gr.Audio(type="filepath",         source="upload",label='Please upload a voice to clone (max. 30mb)'),gr.Audio(source="microphone", type="filepath", streaming=True)],
         | 
| 162 | 
            +
                outputs="audio",
         | 
| 163 | 
            +
                title="Bilal's Voice Cloning Tool"
         | 
| 164 | 
            +
                )
         | 
| 165 | 
            +
            demo.launch()
         | 
