Spaces:
Sleeping
Sleeping
Commit
·
9f8ec13
1
Parent(s):
dc0136b
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import face_recognition
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
from deepface import DeepFace
|
7 |
+
import gradio as gr
|
8 |
+
from datetime import datetime
|
9 |
+
import fast_colorthief
|
10 |
+
import webcolors
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
data1 = []
|
14 |
+
try:
|
15 |
+
data = pickle.loads(open("encodings.pickle", "rb").read())
|
16 |
+
data1 = pickle.loads(open("encodings.pickle", "rb").read())
|
17 |
+
data = np.array(data)
|
18 |
+
encodings = [d["encoding"] for d in data]
|
19 |
+
personNames=[d["name"] for d in data]
|
20 |
+
except:
|
21 |
+
data=[]
|
22 |
+
data1=[]
|
23 |
+
encodings=[]
|
24 |
+
personNames=[]
|
25 |
+
|
26 |
+
# cluster the embeddings
|
27 |
+
print("[INFO] clustering...")
|
28 |
+
|
29 |
+
print('All Encodings Complete!!!')
|
30 |
+
|
31 |
+
|
32 |
+
thres = 0.45
|
33 |
+
path = 'images'
|
34 |
+
images = []
|
35 |
+
classNames= []
|
36 |
+
classFile = 'coco.names'
|
37 |
+
with open(classFile,'rt') as f:
|
38 |
+
#classNames = f.read().rstrip('n').split('n')
|
39 |
+
classNames = f.readlines()
|
40 |
+
|
41 |
+
|
42 |
+
# remove new line characters
|
43 |
+
classNames = [x.strip() for x in classNames]
|
44 |
+
print(classNames)
|
45 |
+
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
|
46 |
+
weightsPath = 'frozen_inference_graph.pb'
|
47 |
+
net = cv2.dnn_DetectionModel(weightsPath,configPath)
|
48 |
+
net.setInputSize(320,320)
|
49 |
+
net.setInputScale(1.0/ 127.5)
|
50 |
+
net.setInputMean((127.5, 127.5, 127.5))
|
51 |
+
net.setInputSwapRB(True)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def faceEncodings(images):
|
56 |
+
|
57 |
+
encodeList = []
|
58 |
+
for img in images:
|
59 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
60 |
+
encode = face_recognition.face_encodings(img)[0]
|
61 |
+
encodeList.append(encode)
|
62 |
+
return encodeList
|
63 |
+
|
64 |
+
|
65 |
+
#encodeListKnown = faceEncodings(images)
|
66 |
+
|
67 |
+
def main(image):
|
68 |
+
personsinimage=[]
|
69 |
+
index=len(encodings)
|
70 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
71 |
+
rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
72 |
+
names=[]
|
73 |
+
|
74 |
+
|
75 |
+
#object
|
76 |
+
try:
|
77 |
+
classIds, confs, bbox = net.detect(image,confThreshold=thres)
|
78 |
+
except Exception as err:
|
79 |
+
print(err)
|
80 |
+
print(classIds,bbox)
|
81 |
+
try:
|
82 |
+
if len(classIds) != 0:
|
83 |
+
for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
|
84 |
+
if names.count(classNames[classId-1]) == 0:
|
85 |
+
names.append(classNames[classId-1])
|
86 |
+
except Exception as err:
|
87 |
+
print(err)
|
88 |
+
#emotion
|
89 |
+
|
90 |
+
try:
|
91 |
+
face_analysis_2=DeepFace.analyze(image, actions = ['emotion'], enforce_detection=False)
|
92 |
+
names.append(face_analysis_2["dominant_emotion"])
|
93 |
+
except:
|
94 |
+
print("No face")
|
95 |
+
names.append("No Face")
|
96 |
+
|
97 |
+
# #Colour
|
98 |
+
|
99 |
+
colourimage = Image.fromarray(image)
|
100 |
+
colourimage = colourimage.convert('RGBA')
|
101 |
+
colourimage = np.array(colourimage).astype(np.uint8)
|
102 |
+
palette=fast_colorthief.get_palette(colourimage)
|
103 |
+
|
104 |
+
|
105 |
+
for i in range(len(palette)):
|
106 |
+
diff={}
|
107 |
+
for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
|
108 |
+
r, g, b = webcolors.hex_to_rgb(color_hex)
|
109 |
+
diff[sum([(r - palette[i][0])**2,
|
110 |
+
(g - palette[i][1])**2,
|
111 |
+
(b - palette[i][2])**2])]= color_name
|
112 |
+
if names.count(diff[min(diff.keys())])==0:
|
113 |
+
names.append(diff[min(diff.keys())])
|
114 |
+
|
115 |
+
|
116 |
+
faces = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
117 |
+
|
118 |
+
facesCurrentFrame = face_recognition.face_locations(faces)
|
119 |
+
encodesCurrentFrame = face_recognition.face_encodings(faces, facesCurrentFrame)
|
120 |
+
|
121 |
+
for encodeFace, faceLoc in zip(encodesCurrentFrame, facesCurrentFrame):
|
122 |
+
|
123 |
+
if len(data1)>0:
|
124 |
+
matches = face_recognition.compare_faces(encodings, encodeFace)
|
125 |
+
faceDis = face_recognition.face_distance(encodings, encodeFace)
|
126 |
+
# print(faceDis)
|
127 |
+
matchIndex = np.argmin(faceDis)
|
128 |
+
|
129 |
+
if matches[matchIndex]:
|
130 |
+
name = personNames[matchIndex].upper()
|
131 |
+
personsinimage.append(name)
|
132 |
+
names.append(name)
|
133 |
+
else:
|
134 |
+
d = [{"name": "unknown"+str(index), "loc": faceLoc, "encoding": encodeFace}]
|
135 |
+
encodings.append(encodeFace)
|
136 |
+
names.append("unknown"+str(index))
|
137 |
+
personNames.append("unknown"+str(index))
|
138 |
+
index+=1
|
139 |
+
data1.extend(d)
|
140 |
+
personsinimage.append("unknown"+str(index))
|
141 |
+
else:
|
142 |
+
d = [{"name": "unknown"+str(index), "loc": faceLoc, "encoding": encodeFace}]
|
143 |
+
encodings.append(encodeFace)
|
144 |
+
names.append("unknown"+str(index))
|
145 |
+
personNames.append("unknown"+str(index))
|
146 |
+
index+=1
|
147 |
+
data1.extend(d)
|
148 |
+
|
149 |
+
# dump the facial encodings data to disk
|
150 |
+
print("[INFO] serializing encodings...")
|
151 |
+
f = open("encodings.pickle", "wb")
|
152 |
+
f.write(pickle.dumps(data1))
|
153 |
+
f.close()
|
154 |
+
|
155 |
+
return ' '.join(names)
|
156 |
+
interface = gr.Interface(fn=main,
|
157 |
+
inputs=["image"],
|
158 |
+
outputs=[gr.inputs.Textbox(label='Names of person in image')],
|
159 |
+
title='Face Recognition ',
|
160 |
+
description='This Space:\n1) Recognize face \n2) Detect Emotion \n3) Detect Colors.\n4) Object Detection \n<br>This space is for personal use. For the time being, it only recognizes few persons. To use it, simply duplicate the space and replace the images in the image folder.')
|
161 |
+
|
162 |
+
|
163 |
+
interface.launch(inline=False)
|