import cv2 import numpy as np import os import pickle from deepface import DeepFace import gradio as gr from datetime import datetime import fast_colorthief import webcolors from PIL import Image thres = 0.45 classNames= [] classFile = 'coco.names' with open(classFile,'rt') as f: #classNames = f.read().rstrip('n').split('n') classNames = f.readlines() # remove new line characters classNames = [x.strip() for x in classNames] print(classNames) configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' weightsPath = 'frozen_inference_graph.pb' net = cv2.dnn_DetectionModel(weightsPath,configPath) net.setInputSize(320,320) net.setInputScale(1.0/ 127.5) net.setInputMean((127.5, 127.5, 127.5)) net.setInputSwapRB(True) def main(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB) names=[] #object try: classIds, confs, bbox = net.detect(image,confThreshold=thres) except Exception as err: print(err) print(classIds,bbox) try: if len(classIds) != 0: for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox): if names.count(classNames[classId-1]) == 0: names.append(classNames[classId-1]) except Exception as err: print(err) #emotion try: face_analysis_2=DeepFace.analyze(image, actions = ['emotion'], enforce_detection=False) names.append(face_analysis_2[0]["dominant_emotion"]) except: print("No face") names.append("No Face") # #Colour colourimage = Image.fromarray(image) colourimage = colourimage.convert('RGBA') colourimage = np.array(colourimage).astype(np.uint8) palette=fast_colorthief.get_palette(colourimage) for i in range(len(palette)): diff={} for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items(): r, g, b = webcolors.hex_to_rgb(color_hex) diff[sum([(r - palette[i][0])**2, (g - palette[i][1])**2, (b - palette[i][2])**2])]= color_name if names.count(diff[min(diff.keys())])==0: names.append(diff[min(diff.keys())]) return ' '.join(names) interface = gr.Interface(fn=main, inputs=["image"], outputs=[gr.inputs.Textbox(label='Names of person in image')], title='Color Object Emotion ', description='This Space:\n \n2) Detect Emotion \n3) Detect Colors.\n4) Object Detection \n') interface.launch(inline=False)