import gradio as gr from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms import uuid import os # Select device device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") torch.set_float32_matmul_precision(["high", "highest"][0]) # Load BiRefNet model birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to(device) # Preprocessing transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) @spaces.GPU def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to(device) with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image # Main function: image upload → preview + downloadable PNG def fn(image): im = load_img(image, output_type="pil").convert("RGB") processed_image = process(im) filename = f"/tmp/processed_{uuid.uuid4().hex}.png" processed_image.save(filename) return processed_image, filename # Gradio interface demo = gr.Interface( fn, inputs=gr.Image(label="Upload an image", sources=["upload"]), outputs=[ gr.Image(label="Processed Preview"), gr.File(label="Download PNG") ], title="Background Removal Tool" ) if __name__ == "__main__": demo.launch(show_error=True)