Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,88 +3,98 @@ import numpy as np
|
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline
|
| 5 |
import librosa
|
| 6 |
-
import soundfile as sf
|
| 7 |
|
| 8 |
class EmotionRecognizer:
|
| 9 |
def __init__(self):
|
| 10 |
-
self.
|
|
|
|
| 11 |
"audio-classification",
|
| 12 |
-
model="
|
| 13 |
-
device=
|
| 14 |
)
|
| 15 |
-
self.target_sr = 16000
|
| 16 |
-
self.max_duration =
|
| 17 |
|
| 18 |
-
def process_audio(self,
|
| 19 |
try:
|
| 20 |
-
audio
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
if
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
target_sr=self.target_sr
|
| 29 |
)
|
| 30 |
-
else:
|
| 31 |
-
audio = audio.astype(np.float32)
|
| 32 |
|
| 33 |
-
|
| 34 |
max_samples = self.max_duration * self.target_sr
|
| 35 |
-
if len(
|
| 36 |
-
|
| 37 |
-
else:
|
| 38 |
-
audio = np.pad(audio, (0, max(0, max_samples - len(audio))))
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
return
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
-
return f"Error
|
| 54 |
|
| 55 |
def create_interface():
|
| 56 |
recognizer = EmotionRecognizer()
|
| 57 |
|
| 58 |
-
with gr.Blocks(title="
|
| 59 |
-
gr.Markdown("#
|
| 60 |
-
gr.Markdown("Record or upload
|
| 61 |
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column():
|
| 64 |
audio_input = gr.Audio(
|
| 65 |
sources=["microphone", "upload"],
|
| 66 |
-
type="
|
| 67 |
label="Input Audio"
|
| 68 |
)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
with gr.Column():
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
label="Confidence Scores",
|
| 75 |
x="labels",
|
| 76 |
-
y="
|
|
|
|
| 77 |
color="labels",
|
| 78 |
height=300
|
| 79 |
)
|
| 80 |
|
| 81 |
-
|
| 82 |
fn=recognizer.process_audio,
|
| 83 |
inputs=audio_input,
|
| 84 |
-
outputs=[
|
| 85 |
)
|
| 86 |
|
| 87 |
-
return
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
demo = create_interface()
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline
|
| 5 |
import librosa
|
|
|
|
| 6 |
|
| 7 |
class EmotionRecognizer:
|
| 8 |
def __init__(self):
|
| 9 |
+
self.device = 0 if torch.cuda.is_available() else -1
|
| 10 |
+
self.model = pipeline(
|
| 11 |
"audio-classification",
|
| 12 |
+
model="superb/wav2vec2-base-superb-er",
|
| 13 |
+
device=self.device
|
| 14 |
)
|
| 15 |
+
self.target_sr = 16000 # Model's required sample rate
|
| 16 |
+
self.max_duration = 6 # Optimal duration for this model
|
| 17 |
|
| 18 |
+
def process_audio(self, audio):
|
| 19 |
try:
|
| 20 |
+
# Handle Gradio audio input (sample_rate, audio_array)
|
| 21 |
+
sample_rate, audio_array = audio
|
| 22 |
+
|
| 23 |
+
# Convert stereo to mono if needed
|
| 24 |
+
if len(audio_array.shape) > 1:
|
| 25 |
+
audio_array = np.mean(audio_array, axis=1)
|
| 26 |
+
|
| 27 |
+
# Convert to float32 and normalize
|
| 28 |
+
audio_array = audio_array.astype(np.float32)
|
| 29 |
+
audio_array /= np.max(np.abs(audio_array))
|
| 30 |
+
|
| 31 |
+
# Resample if necessary
|
| 32 |
+
if sample_rate != self.target_sr:
|
| 33 |
+
audio_array = librosa.resample(
|
| 34 |
+
audio_array,
|
| 35 |
+
orig_sr=sample_rate,
|
| 36 |
target_sr=self.target_sr
|
| 37 |
)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# Trim to max duration
|
| 40 |
max_samples = self.max_duration * self.target_sr
|
| 41 |
+
if len(audio_array) > max_samples:
|
| 42 |
+
audio_array = audio_array[:max_samples]
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Run inference
|
| 45 |
+
results = self.model({
|
| 46 |
+
"array": audio_array,
|
| 47 |
+
"sampling_rate": self.target_sr
|
| 48 |
+
})
|
| 49 |
|
| 50 |
+
# Format output
|
| 51 |
+
output_text = "\n".join(
|
| 52 |
+
[f"{res['label']}: {res['score']*100:.1f}%"
|
| 53 |
+
for res in results]
|
| 54 |
+
)
|
| 55 |
+
plot_data = {
|
| 56 |
+
"labels": [res["label"] for res in results],
|
| 57 |
+
"scores": [res["score"]*100 for res in results]
|
| 58 |
+
}
|
| 59 |
|
| 60 |
+
return output_text, plot_data
|
| 61 |
|
| 62 |
except Exception as e:
|
| 63 |
+
return f"Error: {str(e)}", None
|
| 64 |
|
| 65 |
def create_interface():
|
| 66 |
recognizer = EmotionRecognizer()
|
| 67 |
|
| 68 |
+
with gr.Blocks(title="Voice Emotion Analysis") as app:
|
| 69 |
+
gr.Markdown("# 🎤 Real-time Voice Emotion Analysis")
|
| 70 |
+
gr.Markdown("Record or upload short audio clips (3-6 seconds)")
|
| 71 |
|
| 72 |
with gr.Row():
|
| 73 |
with gr.Column():
|
| 74 |
audio_input = gr.Audio(
|
| 75 |
sources=["microphone", "upload"],
|
| 76 |
+
type="numpy",
|
| 77 |
label="Input Audio"
|
| 78 |
)
|
| 79 |
+
analyze_btn = gr.Button("Analyze Emotion", variant="primary")
|
| 80 |
+
|
| 81 |
with gr.Column():
|
| 82 |
+
output_text = gr.Textbox(label="Emotion Results", lines=4)
|
| 83 |
+
output_plot = gr.BarPlot(
|
|
|
|
| 84 |
x="labels",
|
| 85 |
+
y="scores",
|
| 86 |
+
title="Emotion Distribution",
|
| 87 |
color="labels",
|
| 88 |
height=300
|
| 89 |
)
|
| 90 |
|
| 91 |
+
analyze_btn.click(
|
| 92 |
fn=recognizer.process_audio,
|
| 93 |
inputs=audio_input,
|
| 94 |
+
outputs=[output_text, output_plot]
|
| 95 |
)
|
| 96 |
|
| 97 |
+
return app
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
| 100 |
demo = create_interface()
|