Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import base64
|
|
| 3 |
import requests
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional, List, Dict, Any
|
| 6 |
-
from flask import Flask, request,
|
| 7 |
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
|
@@ -24,12 +24,6 @@ def encode_image_to_base64_from_url(image_url: str, timeout: int = 30) -> str:
|
|
| 24 |
return base64.b64encode(resp.content).decode("utf-8")
|
| 25 |
|
| 26 |
def normalize_messages_to_prompt(messages: List[Dict[str, str]]) -> str:
|
| 27 |
-
# Convert structured chat history into a single prompt string
|
| 28 |
-
# Expected roles: system, user, assistant
|
| 29 |
-
# Output example:
|
| 30 |
-
# System: ...
|
| 31 |
-
# User: ...
|
| 32 |
-
# Assistant: ...
|
| 33 |
lines = []
|
| 34 |
for msg in messages:
|
| 35 |
role = str(msg.get("role", "")).strip().lower()
|
|
@@ -43,25 +37,20 @@ def normalize_messages_to_prompt(messages: List[Dict[str, str]]) -> str:
|
|
| 43 |
else:
|
| 44 |
prefix = "User"
|
| 45 |
lines.append(f"{prefix}: {content}")
|
| 46 |
-
# Optionally add a final cue for the assistant to respond
|
| 47 |
return "\n".join(lines).strip()
|
| 48 |
|
| 49 |
def extract_output(obj: dict) -> str:
|
| 50 |
-
# Try common shapes:
|
| 51 |
-
# 1) { data: { outputs: [ { output: "..." } ] } }
|
| 52 |
try:
|
| 53 |
out = obj["data"]["outputs"][0]["output"]
|
| 54 |
if isinstance(out, str):
|
| 55 |
return out
|
| 56 |
except Exception:
|
| 57 |
pass
|
| 58 |
-
# 2) Flat { "output": "..." }
|
| 59 |
if isinstance(obj, dict) and isinstance(obj.get("output"), str):
|
| 60 |
return obj["output"]
|
| 61 |
-
# Fallback: empty
|
| 62 |
return ""
|
| 63 |
|
| 64 |
-
def call_roboflow_playground(image_b64: str, prompt: str, model: str = DEFAULT_MODEL, timeout: int = 60) ->
|
| 65 |
payload = {
|
| 66 |
"inputs": {
|
| 67 |
"image": {"type": "base64", "value": image_b64},
|
|
@@ -84,60 +73,66 @@ def call_roboflow_playground(image_b64: str, prompt: str, model: str = DEFAULT_M
|
|
| 84 |
@app.route("/infer", methods=["POST"])
|
| 85 |
def infer():
|
| 86 |
try:
|
| 87 |
-
data = request.get_json(force=True
|
| 88 |
|
| 89 |
-
# Image
|
| 90 |
image_b64 = (data.get("image_base64") or "").strip()
|
| 91 |
image_url = (data.get("image_url") or "").strip()
|
| 92 |
image_path = (data.get("image_path") or "").strip()
|
| 93 |
|
| 94 |
if not image_b64:
|
| 95 |
if image_url:
|
| 96 |
-
|
| 97 |
-
image_b64 = encode_image_to_base64_from_url(image_url)
|
| 98 |
-
except Exception as e:
|
| 99 |
-
return jsonify({"error": f"Failed to fetch/encode image_url: {str(e)}"}), 400
|
| 100 |
elif image_path:
|
| 101 |
-
|
| 102 |
-
image_b64 = encode_image_to_base64_from_path(image_path)
|
| 103 |
-
except Exception as e:
|
| 104 |
-
return jsonify({"error": f"Failed to read/encode image_path: {str(e)}"}), 400
|
| 105 |
else:
|
| 106 |
-
return
|
| 107 |
|
| 108 |
-
# Messages
|
| 109 |
messages = data.get("messages", [])
|
| 110 |
-
if not isinstance(messages, list)
|
| 111 |
-
return
|
| 112 |
|
| 113 |
prompt = normalize_messages_to_prompt(messages)
|
| 114 |
if not prompt:
|
| 115 |
-
return
|
| 116 |
|
| 117 |
-
# Model (optional override)
|
| 118 |
model = (data.get("model") or DEFAULT_MODEL).strip() or DEFAULT_MODEL
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
"raw_response": raw_response
|
| 129 |
-
}), 200
|
| 130 |
|
| 131 |
except requests.HTTPError as e:
|
| 132 |
status = getattr(e.response, "status_code", 502)
|
| 133 |
text = getattr(e.response, "text", "")
|
| 134 |
-
return
|
| 135 |
except Exception as e:
|
| 136 |
-
return
|
| 137 |
|
| 138 |
def main():
|
| 139 |
-
# Run Flask on port 7860
|
| 140 |
app.run(host="0.0.0.0", port=7860, debug=False)
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional, List, Dict, Any
|
| 6 |
+
from flask import Flask, request, Response
|
| 7 |
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
|
|
|
| 24 |
return base64.b64encode(resp.content).decode("utf-8")
|
| 25 |
|
| 26 |
def normalize_messages_to_prompt(messages: List[Dict[str, str]]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
lines = []
|
| 28 |
for msg in messages:
|
| 29 |
role = str(msg.get("role", "")).strip().lower()
|
|
|
|
| 37 |
else:
|
| 38 |
prefix = "User"
|
| 39 |
lines.append(f"{prefix}: {content}")
|
|
|
|
| 40 |
return "\n".join(lines).strip()
|
| 41 |
|
| 42 |
def extract_output(obj: dict) -> str:
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
out = obj["data"]["outputs"][0]["output"]
|
| 45 |
if isinstance(out, str):
|
| 46 |
return out
|
| 47 |
except Exception:
|
| 48 |
pass
|
|
|
|
| 49 |
if isinstance(obj, dict) and isinstance(obj.get("output"), str):
|
| 50 |
return obj["output"]
|
|
|
|
| 51 |
return ""
|
| 52 |
|
| 53 |
+
def call_roboflow_playground(image_b64: str, prompt: str, model: str = DEFAULT_MODEL, timeout: int = 60) -> dict:
|
| 54 |
payload = {
|
| 55 |
"inputs": {
|
| 56 |
"image": {"type": "base64", "value": image_b64},
|
|
|
|
| 73 |
@app.route("/infer", methods=["POST"])
|
| 74 |
def infer():
|
| 75 |
try:
|
| 76 |
+
data = request.get_json(force=True) or {}
|
| 77 |
|
| 78 |
+
# Image input
|
| 79 |
image_b64 = (data.get("image_base64") or "").strip()
|
| 80 |
image_url = (data.get("image_url") or "").strip()
|
| 81 |
image_path = (data.get("image_path") or "").strip()
|
| 82 |
|
| 83 |
if not image_b64:
|
| 84 |
if image_url:
|
| 85 |
+
image_b64 = encode_image_to_base64_from_url(image_url)
|
|
|
|
|
|
|
|
|
|
| 86 |
elif image_path:
|
| 87 |
+
image_b64 = encode_image_to_base64_from_path(image_path)
|
|
|
|
|
|
|
|
|
|
| 88 |
else:
|
| 89 |
+
return Response("Missing image. Provide image_base64, image_url, or image_path.", status=400)
|
| 90 |
|
| 91 |
+
# Messages -> prompt
|
| 92 |
messages = data.get("messages", [])
|
| 93 |
+
if not isinstance(messages, list):
|
| 94 |
+
return Response("messages must be a list of {role, content}.", status=400)
|
| 95 |
|
| 96 |
prompt = normalize_messages_to_prompt(messages)
|
| 97 |
if not prompt:
|
| 98 |
+
return Response("messages is empty or has no content.", status=400)
|
| 99 |
|
|
|
|
| 100 |
model = (data.get("model") or DEFAULT_MODEL).strip() or DEFAULT_MODEL
|
| 101 |
|
| 102 |
+
upstream = call_roboflow_playground(image_b64=image_b64, prompt=prompt, model=model)
|
| 103 |
+
output_text = extract_output(upstream).strip()
|
| 104 |
|
| 105 |
+
if not output_text:
|
| 106 |
+
return Response("No output from model.", status=502)
|
| 107 |
|
| 108 |
+
# Return only the AI response as plain text
|
| 109 |
+
return Response(output_text, mimetype="text/plain", status=200)
|
|
|
|
|
|
|
| 110 |
|
| 111 |
except requests.HTTPError as e:
|
| 112 |
status = getattr(e.response, "status_code", 502)
|
| 113 |
text = getattr(e.response, "text", "")
|
| 114 |
+
return Response(f"Upstream HTTP error ({status}): {text}", status=502)
|
| 115 |
except Exception as e:
|
| 116 |
+
return Response(str(e), status=500)
|
| 117 |
|
| 118 |
def main():
|
|
|
|
| 119 |
app.run(host="0.0.0.0", port=7860, debug=False)
|
| 120 |
|
| 121 |
if __name__ == "__main__":
|
| 122 |
main()
|
| 123 |
+
|
| 124 |
+
Client test (super simple):
|
| 125 |
+
import requests
|
| 126 |
+
API_URL = "https://corvo-ai-xx-mistral.hf.space/infer"
|
| 127 |
+
|
| 128 |
+
payload = {
|
| 129 |
+
"image_url": "https://images.unsplash.com/photo-1518791841217-8f162f1e1131",
|
| 130 |
+
"messages": [
|
| 131 |
+
{"role": "system", "content": "You are a helpful vision assistant."},
|
| 132 |
+
{"role": "user", "content": "What do you see in this image?"}
|
| 133 |
+
]
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
r = requests.post(API_URL, json=payload, timeout=60)
|
| 137 |
+
print(r.status_code)
|
| 138 |
+
print(r.text)
|