|
import streamlit as st |
|
import pandas as pd |
|
from huggingface_hub import hf_hub_download |
|
import joblib |
|
|
|
|
|
model_path = hf_hub_download(repo_id= "CRR79/TourismPackage-Purchase-Prediction", filename="best_TourismPackage_Purchase_model_v1.joblib") |
|
print("Model path:", model_path) |
|
|
|
model = joblib.load(model_path) |
|
|
|
|
|
|
|
st.title("Tourism Package Purchase Prediction App") |
|
st.write(""" |
|
This application predicts the likelihood of purchaging tourism package. |
|
Please enter data below to get a prediction. |
|
""") |
|
|
|
|
|
|
|
age = st.number_input("Age", min_value=18, max_value=100, value=35) |
|
type_of_contact = st.selectbox("Type of Contact", ["Company Invited", "Self Inquiry"]) |
|
city_tier = st.selectbox("City Tier", [1, 2, 3]) |
|
occupation = st.selectbox("Occupation", ["Salaried", "Freelancer"]) |
|
gender = st.selectbox("Gender", ["Male", "Female"]) |
|
num_persons = st.number_input("Number of Persons Visiting", min_value=1, max_value=10, value=2) |
|
property_star = st.selectbox("Preferred Property Star", [1, 2, 3, 4, 5]) |
|
marital_status = st.selectbox("Marital Status", ["Single", "Married", "Divorced"]) |
|
num_trips = st.number_input("Number of Trips Annually", min_value=0, max_value=20, value=3) |
|
passport = st.selectbox("Passport", [0, 1]) |
|
own_car = st.selectbox("Own Car", [0, 1]) |
|
num_children = st.number_input("Number of Children Visiting (<5 years)", min_value=0, max_value=5, value=1) |
|
designation = st.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"]) |
|
monthly_income = st.number_input("Monthly Income", min_value=1000, max_value=1000000, value=50000) |
|
pitch_score = st.slider("Pitch Satisfaction Score", 1, 5, 4) |
|
product_pitched = st.selectbox("Product Pitched", ["Basic", "Deluxe", "Super Deluxe", "King", "Queen"]) |
|
num_followups = st.number_input("Number of Follow-ups", min_value=0, max_value=20, value=2) |
|
duration_pitch = st.number_input("Duration of Pitch (minutes)", min_value=0, max_value=60, value=15) |
|
|
|
|
|
|
|
family_size = num_persons + num_children |
|
income_per_person = monthly_income / (family_size + 1) |
|
|
|
|
|
|
|
input_data = pd.DataFrame([{ |
|
'Age': age, |
|
'TypeofContact': type_of_contact, |
|
'CityTier': city_tier, |
|
'Occupation': occupation, |
|
'Gender': gender, |
|
'NumberOfPersonVisiting': num_persons, |
|
'PreferredPropertyStar': property_star, |
|
'MaritalStatus': marital_status, |
|
'NumberOfTrips': num_trips, |
|
'Passport': passport, |
|
'OwnCar': own_car, |
|
'NumberOfChildrenVisiting': num_children, |
|
'Designation': designation, |
|
'MonthlyIncome': monthly_income, |
|
'PitchSatisfactionScore': pitch_score, |
|
'ProductPitched': product_pitched, |
|
'NumberOfFollowups': num_followups, |
|
'DurationOfPitch': duration_pitch, |
|
'FamilySize': family_size, |
|
'IncomePerPerson': income_per_person |
|
}]) |
|
|
|
|
|
print("Input Data:") |
|
print(input_data) |
|
|
|
st.write("### Input DataFrame") |
|
|
|
if st.button("Predict Purchage"): |
|
prediction = model.predict(input_data) |
|
print (" Prediction:",prediction[0]) |
|
result = "Purchased" if prediction[0] == 1 else "Not Purchased" |
|
st.subheader("Prediction Result:") |
|
st.success(f"The model predicts: **{result}**") |
|
|