Spaces:
Runtime error
Runtime error
| # -------------------------------------------------------- | |
| # Unified Contrastive Learning (UniCL) | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Written by Jianwei Yang ([email protected]) | |
| # Based on Swin Transformer written by Zhe Liu | |
| # -------------------------------------------------------- | |
| import os | |
| import yaml | |
| from yacs.config import CfgNode as CN | |
| _C = CN() | |
| _C.VERBOSE = False | |
| # Base config files | |
| _C.BASE = [''] | |
| # ----------------------------------------------------------------------------- | |
| # Data settings | |
| # ----------------------------------------------------------------------------- | |
| _C.DATA = CN() | |
| # Batch size for a single GPU, could be overwritten by command line argument | |
| _C.DATA.BATCH_SIZE = 128 | |
| # Path to dataset, could be overwritten by command line argument | |
| _C.DATA.DATA_PATH = '' | |
| # Dataset name | |
| _C.DATA.DATASET = 'imagenet' | |
| # Input image size | |
| _C.DATA.IMG_SIZE = 224 | |
| # Interpolation to resize image (random, bilinear, bicubic) | |
| _C.DATA.INTERPOLATION = 'bicubic' | |
| # Use zipped dataset instead of folder dataset | |
| # could be overwritten by command line argument | |
| _C.DATA.ZIP_MODE = False | |
| # Cache Data in Memory, could be overwritten by command line argument | |
| _C.DATA.CACHE_MODE = 'part' | |
| # Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. | |
| _C.DATA.PIN_MEMORY = True | |
| # Number of data loading threads | |
| _C.DATA.NUM_WORKERS = 8 | |
| # ----------------------------------------------------------------------------- | |
| # Model settings | |
| # ----------------------------------------------------------------------------- | |
| _C.MODEL = CN() | |
| # Model name | |
| _C.MODEL.NAME = '' | |
| # Checkpoint to resume, could be overwritten by command line argument | |
| _C.MODEL.RESUME = '' | |
| # Number of classes, overwritten in data preparation | |
| _C.MODEL.NUM_CLASSES = 0 | |
| # Label Smoothing | |
| _C.MODEL.LABEL_SMOOTHING = 0.1 | |
| # Whether load pretrained model | |
| _C.MODEL.PRETRAINED = '' | |
| # Projection dimension | |
| _C.MODEL.DIM_PROJECTION = 512 | |
| # Mode specific | |
| _C.MODEL.SPEC = CN(new_allowed=True) | |
| # ----------------------------------------------------------------------------- | |
| # Build Image Encoder | |
| # ----------------------------------------------------------------------------- | |
| _C.MODEL.IMAGE_ENCODER = CN() | |
| # Image encoder type | |
| _C.MODEL.IMAGE_ENCODER.TYPE = 'swin' | |
| # Input image size | |
| _C.MODEL.IMAGE_ENCODER.IMG_SIZE = 224 | |
| # Dropout rate | |
| _C.MODEL.IMAGE_ENCODER.DROP_RATE = 0.0 | |
| # Drop path rate | |
| _C.MODEL.IMAGE_ENCODER.DROP_PATH_RATE = 0.1 | |
| # Swin Transformer parameters | |
| _C.MODEL.IMAGE_ENCODER.SWIN = CN() | |
| _C.MODEL.IMAGE_ENCODER.SWIN.PATCH_SIZE = 4 | |
| _C.MODEL.IMAGE_ENCODER.SWIN.IN_CHANS = 3 | |
| _C.MODEL.IMAGE_ENCODER.SWIN.EMBED_DIM = 96 | |
| _C.MODEL.IMAGE_ENCODER.SWIN.DEPTHS = [2, 2, 6, 2] | |
| _C.MODEL.IMAGE_ENCODER.SWIN.NUM_HEADS = [3, 6, 12, 24] | |
| _C.MODEL.IMAGE_ENCODER.SWIN.WINDOW_SIZE = 7 | |
| _C.MODEL.IMAGE_ENCODER.SWIN.MLP_RATIO = 4. | |
| _C.MODEL.IMAGE_ENCODER.SWIN.QKV_BIAS = True | |
| _C.MODEL.IMAGE_ENCODER.SWIN.QK_SCALE = None | |
| _C.MODEL.IMAGE_ENCODER.SWIN.APE = False | |
| _C.MODEL.IMAGE_ENCODER.SWIN.PATCH_NORM = True | |
| # FocalNet parameters | |
| _C.MODEL.IMAGE_ENCODER.FOCAL = CN() | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.PATCH_SIZE = 4 | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.IN_CHANS = 3 | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.EMBED_DIM = 96 | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.DEPTHS = [2, 2, 6, 2] | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.MLP_RATIO = 4. | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.PATCH_NORM = True | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_LEVELS = [2, 2, 2, 2] | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_WINDOWS = [3, 3, 3, 3] | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_FACTORS = [2, 2, 2, 2] | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.USE_CONV_EMBED = False | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.USE_LAYERSCALE = False | |
| _C.MODEL.IMAGE_ENCODER.FOCAL.USE_POSTLN = False | |
| # ----------------------------------------------------------------------------- | |
| # Build Text Encoder | |
| # ----------------------------------------------------------------------------- | |
| _C.MODEL.TEXT_ENCODER = CN() | |
| _C.MODEL.TEXT_ENCODER.NAME = 'transformer' | |
| _C.MODEL.TEXT_ENCODER.LOAD_PRETRAINED = False | |
| _C.MODEL.TEXT_ENCODER.PRETRAINED = '' | |
| _C.MODEL.TEXT_ENCODER.TOKENIZER = 'clip' | |
| _C.MODEL.TEXT_ENCODER.CONTEXT_LENGTH = 77 | |
| _C.MODEL.TEXT_ENCODER.WIDTH = 1024 | |
| _C.MODEL.TEXT_ENCODER.HEADS = 16 | |
| _C.MODEL.TEXT_ENCODER.LAYERS = 12 | |
| _C.MODEL.TEXT_ENCODER.AUTOGRESSIVE = True | |
| # ----------------------------------------------------------------------------- | |
| # Training settings | |
| # ----------------------------------------------------------------------------- | |
| _C.TRAIN = CN() | |
| _C.TRAIN.START_EPOCH = 0 | |
| _C.TRAIN.EPOCHS = 32 | |
| _C.TRAIN.WARMUP_EPOCHS = 5 | |
| _C.TRAIN.WEIGHT_DECAY = 0.1 | |
| _C.TRAIN.BASE_LR = 5e-4 | |
| _C.TRAIN.WARMUP_LR = 5e-7 | |
| _C.TRAIN.MIN_LR = 5e-6 | |
| # Clip gradient norm | |
| _C.TRAIN.CLIP_GRAD = 5.0 | |
| # Auto resume from latest checkpoint | |
| _C.TRAIN.AUTO_RESUME = True | |
| # Gradient accumulation steps | |
| # could be overwritten by command line argument | |
| _C.TRAIN.ACCUMULATION_STEPS = 0 | |
| # Whether to use gradient checkpointing to save memory | |
| # could be overwritten by command line argument | |
| _C.TRAIN.USE_CHECKPOINT = False | |
| # LR scheduler | |
| _C.TRAIN.LR_SCHEDULER = CN() | |
| _C.TRAIN.LR_SCHEDULER.NAME = 'cosine' | |
| # Epoch interval to decay LR, used in StepLRScheduler | |
| _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 | |
| # LR decay rate, used in StepLRScheduler | |
| _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 | |
| # Optimizer | |
| _C.TRAIN.OPTIMIZER = CN() | |
| _C.TRAIN.OPTIMIZER.NAME = 'adamw' | |
| # Optimizer Epsilon | |
| _C.TRAIN.OPTIMIZER.EPS = 1e-8 | |
| # Optimizer Betas | |
| _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) | |
| # SGD momentum | |
| _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 | |
| # ----------------------------------------------------------------------------- | |
| # Augmentation settings | |
| # ----------------------------------------------------------------------------- | |
| _C.AUG = CN() | |
| # Color jitter factor | |
| _C.AUG.COLOR_JITTER = 0.4 | |
| # Use AutoAugment policy. "v0" or "original" | |
| _C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1' | |
| # Random erase prob | |
| _C.AUG.REPROB = 0.25 | |
| # Random erase mode | |
| _C.AUG.REMODE = 'pixel' | |
| # Random erase count | |
| _C.AUG.RECOUNT = 1 | |
| # Mixup alpha, mixup enabled if > 0 | |
| _C.AUG.MIXUP = 0.8 | |
| # Cutmix alpha, cutmix enabled if > 0 | |
| _C.AUG.CUTMIX = 1.0 | |
| # Cutmix min/max ratio, overrides alpha and enables cutmix if set | |
| _C.AUG.CUTMIX_MINMAX = None | |
| # Probability of performing mixup or cutmix when either/both is enabled | |
| _C.AUG.MIXUP_PROB = 1.0 | |
| # Probability of switching to cutmix when both mixup and cutmix enabled | |
| _C.AUG.MIXUP_SWITCH_PROB = 0.5 | |
| # How to apply mixup/cutmix params. Per "batch", "pair", or "elem" | |
| _C.AUG.MIXUP_MODE = 'batch' | |
| # ----------------------------------------------------------------------------- | |
| # Testing settings | |
| # ----------------------------------------------------------------------------- | |
| _C.TEST = CN() | |
| # Whether to use center crop when testing | |
| _C.TEST.CROP = True | |
| # ----------------------------------------------------------------------------- | |
| # Misc | |
| # ----------------------------------------------------------------------------- | |
| # Mixed precision opt level, if O0, no amp is used ('O0', 'O1', 'O2') | |
| # overwritten by command line argument | |
| _C.AMP_OPT_LEVEL = '' | |
| # Path to output folder, overwritten by command line argument | |
| _C.OUTPUT = '' | |
| # Tag of experiment, overwritten by command line argument | |
| _C.TAG = 'default' | |
| # Frequency to save checkpoint | |
| _C.SAVE_FREQ = 1 | |
| # Frequency to logging info | |
| _C.PRINT_FREQ = 100 | |
| # Fixed random seed | |
| _C.SEED = 0 | |
| # Perform evaluation only, overwritten by command line argument | |
| _C.EVAL_MODE = False | |
| # Test throughput only, overwritten by command line argument | |
| _C.THROUGHPUT_MODE = False | |
| # Debug only so that skip dataloader initialization, overwritten by command line argument | |
| _C.DEBUG_MODE = False | |
| # local rank for DistributedDataParallel, given by command line argument | |
| _C.LOCAL_RANK = 0 | |
| def _update_config_from_file(config, cfg_file): | |
| config.defrost() | |
| with open(cfg_file, 'r') as f: | |
| yaml_cfg = yaml.load(f, Loader=yaml.FullLoader) | |
| for cfg in yaml_cfg.setdefault('BASE', ['']): | |
| if cfg: | |
| _update_config_from_file( | |
| config, os.path.join(os.path.dirname(cfg_file), cfg) | |
| ) | |
| print('=> merge config from {}'.format(cfg_file)) | |
| config.merge_from_file(cfg_file) | |
| config.freeze() | |
| def update_config(config, args): | |
| _update_config_from_file(config, args.cfg) | |
| config.freeze() | |
| def get_config(args): | |
| """Get a yacs CfgNode object with default values.""" | |
| # Return a clone so that the defaults will not be altered | |
| # This is for the "local variable" use pattern | |
| config = _C.clone() | |
| update_config(config, args) | |
| return config | |