Spaces:
Build error
Build error
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os | |
| import sys | |
| __dir__ = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(__dir__) | |
| sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
| import yaml | |
| import paddle | |
| import paddle.distributed as dist | |
| from ppocr.data import build_dataloader | |
| from ppocr.modeling.architectures import build_model | |
| from ppocr.losses import build_loss | |
| from ppocr.optimizer import build_optimizer | |
| from ppocr.postprocess import build_post_process | |
| from ppocr.metrics import build_metric | |
| from ppocr.utils.save_load import load_model | |
| from ppocr.utils.utility import set_seed | |
| from ppocr.modeling.architectures import apply_to_static | |
| import tools.program as program | |
| dist.get_world_size() | |
| def main(config, device, logger, vdl_writer): | |
| # init dist environment | |
| if config['Global']['distributed']: | |
| dist.init_parallel_env() | |
| global_config = config['Global'] | |
| # build dataloader | |
| train_dataloader = build_dataloader(config, 'Train', device, logger) | |
| if len(train_dataloader) == 0: | |
| logger.error( | |
| "No Images in train dataset, please ensure\n" + | |
| "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n" | |
| + | |
| "\t2. The annotation file and path in the configuration file are provided normally." | |
| ) | |
| return | |
| if config['Eval']: | |
| valid_dataloader = build_dataloader(config, 'Eval', device, logger) | |
| else: | |
| valid_dataloader = None | |
| # build post process | |
| post_process_class = build_post_process(config['PostProcess'], | |
| global_config) | |
| # build model | |
| # for rec algorithm | |
| if hasattr(post_process_class, 'character'): | |
| char_num = len(getattr(post_process_class, 'character')) | |
| if config['Architecture']["algorithm"] in ["Distillation", | |
| ]: # distillation model | |
| for key in config['Architecture']["Models"]: | |
| if config['Architecture']['Models'][key]['Head'][ | |
| 'name'] == 'MultiHead': # for multi head | |
| if config['PostProcess'][ | |
| 'name'] == 'DistillationSARLabelDecode': | |
| char_num = char_num - 2 | |
| # update SARLoss params | |
| assert list(config['Loss']['loss_config_list'][-1].keys())[ | |
| 0] == 'DistillationSARLoss' | |
| config['Loss']['loss_config_list'][-1][ | |
| 'DistillationSARLoss']['ignore_index'] = char_num + 1 | |
| out_channels_list = {} | |
| out_channels_list['CTCLabelDecode'] = char_num | |
| out_channels_list['SARLabelDecode'] = char_num + 2 | |
| config['Architecture']['Models'][key]['Head'][ | |
| 'out_channels_list'] = out_channels_list | |
| else: | |
| config['Architecture']["Models"][key]["Head"][ | |
| 'out_channels'] = char_num | |
| elif config['Architecture']['Head'][ | |
| 'name'] == 'MultiHead': # for multi head | |
| if config['PostProcess']['name'] == 'SARLabelDecode': | |
| char_num = char_num - 2 | |
| # update SARLoss params | |
| assert list(config['Loss']['loss_config_list'][1].keys())[ | |
| 0] == 'SARLoss' | |
| if config['Loss']['loss_config_list'][1]['SARLoss'] is None: | |
| config['Loss']['loss_config_list'][1]['SARLoss'] = { | |
| 'ignore_index': char_num + 1 | |
| } | |
| else: | |
| config['Loss']['loss_config_list'][1]['SARLoss'][ | |
| 'ignore_index'] = char_num + 1 | |
| out_channels_list = {} | |
| out_channels_list['CTCLabelDecode'] = char_num | |
| out_channels_list['SARLabelDecode'] = char_num + 2 | |
| config['Architecture']['Head'][ | |
| 'out_channels_list'] = out_channels_list | |
| else: # base rec model | |
| config['Architecture']["Head"]['out_channels'] = char_num | |
| if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model | |
| config['Loss']['ignore_index'] = char_num - 1 | |
| model = build_model(config['Architecture']) | |
| use_sync_bn = config["Global"].get("use_sync_bn", False) | |
| if use_sync_bn: | |
| model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
| logger.info('convert_sync_batchnorm') | |
| model = apply_to_static(model, config, logger) | |
| # build loss | |
| loss_class = build_loss(config['Loss']) | |
| # build optim | |
| optimizer, lr_scheduler = build_optimizer( | |
| config['Optimizer'], | |
| epochs=config['Global']['epoch_num'], | |
| step_each_epoch=len(train_dataloader), | |
| model=model) | |
| # build metric | |
| eval_class = build_metric(config['Metric']) | |
| logger.info('train dataloader has {} iters'.format(len(train_dataloader))) | |
| if valid_dataloader is not None: | |
| logger.info('valid dataloader has {} iters'.format( | |
| len(valid_dataloader))) | |
| use_amp = config["Global"].get("use_amp", False) | |
| amp_level = config["Global"].get("amp_level", 'O2') | |
| amp_custom_black_list = config['Global'].get('amp_custom_black_list', []) | |
| if use_amp: | |
| AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, } | |
| if paddle.is_compiled_with_cuda(): | |
| AMP_RELATED_FLAGS_SETTING.update({ | |
| 'FLAGS_cudnn_batchnorm_spatial_persistent': 1 | |
| }) | |
| paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING) | |
| scale_loss = config["Global"].get("scale_loss", 1.0) | |
| use_dynamic_loss_scaling = config["Global"].get( | |
| "use_dynamic_loss_scaling", False) | |
| scaler = paddle.amp.GradScaler( | |
| init_loss_scaling=scale_loss, | |
| use_dynamic_loss_scaling=use_dynamic_loss_scaling) | |
| if amp_level == "O2": | |
| model, optimizer = paddle.amp.decorate( | |
| models=model, | |
| optimizers=optimizer, | |
| level=amp_level, | |
| master_weight=True) | |
| else: | |
| scaler = None | |
| # load pretrain model | |
| pre_best_model_dict = load_model(config, model, optimizer, | |
| config['Architecture']["model_type"]) | |
| if config['Global']['distributed']: | |
| model = paddle.DataParallel(model) | |
| # start train | |
| program.train(config, train_dataloader, valid_dataloader, device, model, | |
| loss_class, optimizer, lr_scheduler, post_process_class, | |
| eval_class, pre_best_model_dict, logger, vdl_writer, scaler, | |
| amp_level, amp_custom_black_list) | |
| def test_reader(config, device, logger): | |
| loader = build_dataloader(config, 'Train', device, logger) | |
| import time | |
| starttime = time.time() | |
| count = 0 | |
| try: | |
| for data in loader(): | |
| count += 1 | |
| if count % 1 == 0: | |
| batch_time = time.time() - starttime | |
| starttime = time.time() | |
| logger.info("reader: {}, {}, {}".format( | |
| count, len(data[0]), batch_time)) | |
| except Exception as e: | |
| logger.info(e) | |
| logger.info("finish reader: {}, Success!".format(count)) | |
| if __name__ == '__main__': | |
| config, device, logger, vdl_writer = program.preprocess(is_train=True) | |
| seed = config['Global']['seed'] if 'seed' in config['Global'] else 1024 | |
| set_seed(seed) | |
| main(config, device, logger, vdl_writer) | |
| # test_reader(config, device, logger) | |