Spaces:
Build error
Build error
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| import os | |
| from paddle.io import Dataset | |
| import lmdb | |
| import cv2 | |
| import string | |
| import six | |
| from PIL import Image | |
| from .imaug import transform, create_operators | |
| class LMDBDataSet(Dataset): | |
| def __init__(self, config, mode, logger, seed=None): | |
| super(LMDBDataSet, self).__init__() | |
| global_config = config['Global'] | |
| dataset_config = config[mode]['dataset'] | |
| loader_config = config[mode]['loader'] | |
| batch_size = loader_config['batch_size_per_card'] | |
| data_dir = dataset_config['data_dir'] | |
| self.do_shuffle = loader_config['shuffle'] | |
| self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir) | |
| logger.info("Initialize indexs of datasets:%s" % data_dir) | |
| self.data_idx_order_list = self.dataset_traversal() | |
| if self.do_shuffle: | |
| np.random.shuffle(self.data_idx_order_list) | |
| self.ops = create_operators(dataset_config['transforms'], global_config) | |
| self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", | |
| 1) | |
| ratio_list = dataset_config.get("ratio_list", [1.0]) | |
| self.need_reset = True in [x < 1 for x in ratio_list] | |
| def load_hierarchical_lmdb_dataset(self, data_dir): | |
| lmdb_sets = {} | |
| dataset_idx = 0 | |
| for dirpath, dirnames, filenames in os.walk(data_dir + '/'): | |
| if not dirnames: | |
| env = lmdb.open( | |
| dirpath, | |
| max_readers=32, | |
| readonly=True, | |
| lock=False, | |
| readahead=False, | |
| meminit=False) | |
| txn = env.begin(write=False) | |
| num_samples = int(txn.get('num-samples'.encode())) | |
| lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \ | |
| "txn":txn, "num_samples":num_samples} | |
| dataset_idx += 1 | |
| return lmdb_sets | |
| def dataset_traversal(self): | |
| lmdb_num = len(self.lmdb_sets) | |
| total_sample_num = 0 | |
| for lno in range(lmdb_num): | |
| total_sample_num += self.lmdb_sets[lno]['num_samples'] | |
| data_idx_order_list = np.zeros((total_sample_num, 2)) | |
| beg_idx = 0 | |
| for lno in range(lmdb_num): | |
| tmp_sample_num = self.lmdb_sets[lno]['num_samples'] | |
| end_idx = beg_idx + tmp_sample_num | |
| data_idx_order_list[beg_idx:end_idx, 0] = lno | |
| data_idx_order_list[beg_idx:end_idx, 1] \ | |
| = list(range(tmp_sample_num)) | |
| data_idx_order_list[beg_idx:end_idx, 1] += 1 | |
| beg_idx = beg_idx + tmp_sample_num | |
| return data_idx_order_list | |
| def get_img_data(self, value): | |
| """get_img_data""" | |
| if not value: | |
| return None | |
| imgdata = np.frombuffer(value, dtype='uint8') | |
| if imgdata is None: | |
| return None | |
| imgori = cv2.imdecode(imgdata, 1) | |
| if imgori is None: | |
| return None | |
| return imgori | |
| def get_ext_data(self): | |
| ext_data_num = 0 | |
| for op in self.ops: | |
| if hasattr(op, 'ext_data_num'): | |
| ext_data_num = getattr(op, 'ext_data_num') | |
| break | |
| load_data_ops = self.ops[:self.ext_op_transform_idx] | |
| ext_data = [] | |
| while len(ext_data) < ext_data_num: | |
| lmdb_idx, file_idx = self.data_idx_order_list[np.random.randint( | |
| len(self))] | |
| lmdb_idx = int(lmdb_idx) | |
| file_idx = int(file_idx) | |
| sample_info = self.get_lmdb_sample_info( | |
| self.lmdb_sets[lmdb_idx]['txn'], file_idx) | |
| if sample_info is None: | |
| continue | |
| img, label = sample_info | |
| data = {'image': img, 'label': label} | |
| data = transform(data, load_data_ops) | |
| if data is None: | |
| continue | |
| ext_data.append(data) | |
| return ext_data | |
| def get_lmdb_sample_info(self, txn, index): | |
| label_key = 'label-%09d'.encode() % index | |
| label = txn.get(label_key) | |
| if label is None: | |
| return None | |
| label = label.decode('utf-8') | |
| img_key = 'image-%09d'.encode() % index | |
| imgbuf = txn.get(img_key) | |
| return imgbuf, label | |
| def __getitem__(self, idx): | |
| lmdb_idx, file_idx = self.data_idx_order_list[idx] | |
| lmdb_idx = int(lmdb_idx) | |
| file_idx = int(file_idx) | |
| sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'], | |
| file_idx) | |
| if sample_info is None: | |
| return self.__getitem__(np.random.randint(self.__len__())) | |
| img, label = sample_info | |
| data = {'image': img, 'label': label} | |
| data['ext_data'] = self.get_ext_data() | |
| outs = transform(data, self.ops) | |
| if outs is None: | |
| return self.__getitem__(np.random.randint(self.__len__())) | |
| return outs | |
| def __len__(self): | |
| return self.data_idx_order_list.shape[0] | |
| class LMDBDataSetSR(LMDBDataSet): | |
| def buf2PIL(self, txn, key, type='RGB'): | |
| imgbuf = txn.get(key) | |
| buf = six.BytesIO() | |
| buf.write(imgbuf) | |
| buf.seek(0) | |
| im = Image.open(buf).convert(type) | |
| return im | |
| def str_filt(self, str_, voc_type): | |
| alpha_dict = { | |
| 'digit': string.digits, | |
| 'lower': string.digits + string.ascii_lowercase, | |
| 'upper': string.digits + string.ascii_letters, | |
| 'all': string.digits + string.ascii_letters + string.punctuation | |
| } | |
| if voc_type == 'lower': | |
| str_ = str_.lower() | |
| for char in str_: | |
| if char not in alpha_dict[voc_type]: | |
| str_ = str_.replace(char, '') | |
| return str_ | |
| def get_lmdb_sample_info(self, txn, index): | |
| self.voc_type = 'upper' | |
| self.max_len = 100 | |
| self.test = False | |
| label_key = b'label-%09d' % index | |
| word = str(txn.get(label_key).decode()) | |
| img_HR_key = b'image_hr-%09d' % index # 128*32 | |
| img_lr_key = b'image_lr-%09d' % index # 64*16 | |
| try: | |
| img_HR = self.buf2PIL(txn, img_HR_key, 'RGB') | |
| img_lr = self.buf2PIL(txn, img_lr_key, 'RGB') | |
| except IOError or len(word) > self.max_len: | |
| return self[index + 1] | |
| label_str = self.str_filt(word, self.voc_type) | |
| return img_HR, img_lr, label_str | |
| def __getitem__(self, idx): | |
| lmdb_idx, file_idx = self.data_idx_order_list[idx] | |
| lmdb_idx = int(lmdb_idx) | |
| file_idx = int(file_idx) | |
| sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'], | |
| file_idx) | |
| if sample_info is None: | |
| return self.__getitem__(np.random.randint(self.__len__())) | |
| img_HR, img_lr, label_str = sample_info | |
| data = {'image_hr': img_HR, 'image_lr': img_lr, 'label': label_str} | |
| outs = transform(data, self.ops) | |
| if outs is None: | |
| return self.__getitem__(np.random.randint(self.__len__())) | |
| return outs | |