Spaces:
Build error
Build error
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| from ppocr.metrics.det_metric import DetMetric | |
| class TableStructureMetric(object): | |
| def __init__(self, | |
| main_indicator='acc', | |
| eps=1e-6, | |
| del_thead_tbody=False, | |
| **kwargs): | |
| self.main_indicator = main_indicator | |
| self.eps = eps | |
| self.del_thead_tbody = del_thead_tbody | |
| self.reset() | |
| def __call__(self, pred_label, batch=None, *args, **kwargs): | |
| preds, labels = pred_label | |
| pred_structure_batch_list = preds['structure_batch_list'] | |
| gt_structure_batch_list = labels['structure_batch_list'] | |
| correct_num = 0 | |
| all_num = 0 | |
| for (pred, pred_conf), target in zip(pred_structure_batch_list, | |
| gt_structure_batch_list): | |
| pred_str = ''.join(pred) | |
| target_str = ''.join(target) | |
| if self.del_thead_tbody: | |
| pred_str = pred_str.replace('<thead>', '').replace( | |
| '</thead>', '').replace('<tbody>', '').replace('</tbody>', | |
| '') | |
| target_str = target_str.replace('<thead>', '').replace( | |
| '</thead>', '').replace('<tbody>', '').replace('</tbody>', | |
| '') | |
| if pred_str == target_str: | |
| correct_num += 1 | |
| all_num += 1 | |
| self.correct_num += correct_num | |
| self.all_num += all_num | |
| def get_metric(self): | |
| """ | |
| return metrics { | |
| 'acc': 0, | |
| } | |
| """ | |
| acc = 1.0 * self.correct_num / (self.all_num + self.eps) | |
| self.reset() | |
| return {'acc': acc} | |
| def reset(self): | |
| self.correct_num = 0 | |
| self.all_num = 0 | |
| self.len_acc_num = 0 | |
| self.token_nums = 0 | |
| self.anys_dict = dict() | |
| class TableMetric(object): | |
| def __init__(self, | |
| main_indicator='acc', | |
| compute_bbox_metric=False, | |
| box_format='xyxy', | |
| del_thead_tbody=False, | |
| **kwargs): | |
| """ | |
| @param sub_metrics: configs of sub_metric | |
| @param main_matric: main_matric for save best_model | |
| @param kwargs: | |
| """ | |
| self.structure_metric = TableStructureMetric( | |
| del_thead_tbody=del_thead_tbody) | |
| self.bbox_metric = DetMetric() if compute_bbox_metric else None | |
| self.main_indicator = main_indicator | |
| self.box_format = box_format | |
| self.reset() | |
| def __call__(self, pred_label, batch=None, *args, **kwargs): | |
| self.structure_metric(pred_label) | |
| if self.bbox_metric is not None: | |
| self.bbox_metric(*self.prepare_bbox_metric_input(pred_label)) | |
| def prepare_bbox_metric_input(self, pred_label): | |
| pred_bbox_batch_list = [] | |
| gt_ignore_tags_batch_list = [] | |
| gt_bbox_batch_list = [] | |
| preds, labels = pred_label | |
| batch_num = len(preds['bbox_batch_list']) | |
| for batch_idx in range(batch_num): | |
| # pred | |
| pred_bbox_list = [ | |
| self.format_box(pred_box) | |
| for pred_box in preds['bbox_batch_list'][batch_idx] | |
| ] | |
| pred_bbox_batch_list.append({'points': pred_bbox_list}) | |
| # gt | |
| gt_bbox_list = [] | |
| gt_ignore_tags_list = [] | |
| for gt_box in labels['bbox_batch_list'][batch_idx]: | |
| gt_bbox_list.append(self.format_box(gt_box)) | |
| gt_ignore_tags_list.append(0) | |
| gt_bbox_batch_list.append(gt_bbox_list) | |
| gt_ignore_tags_batch_list.append(gt_ignore_tags_list) | |
| return [ | |
| pred_bbox_batch_list, | |
| [0, 0, gt_bbox_batch_list, gt_ignore_tags_batch_list] | |
| ] | |
| def get_metric(self): | |
| structure_metric = self.structure_metric.get_metric() | |
| if self.bbox_metric is None: | |
| return structure_metric | |
| bbox_metric = self.bbox_metric.get_metric() | |
| if self.main_indicator == self.bbox_metric.main_indicator: | |
| output = bbox_metric | |
| for sub_key in structure_metric: | |
| output["structure_metric_{}".format( | |
| sub_key)] = structure_metric[sub_key] | |
| else: | |
| output = structure_metric | |
| for sub_key in bbox_metric: | |
| output["bbox_metric_{}".format(sub_key)] = bbox_metric[sub_key] | |
| return output | |
| def reset(self): | |
| self.structure_metric.reset() | |
| if self.bbox_metric is not None: | |
| self.bbox_metric.reset() | |
| def format_box(self, box): | |
| if self.box_format == 'xyxy': | |
| x1, y1, x2, y2 = box | |
| box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] | |
| elif self.box_format == 'xywh': | |
| x, y, w, h = box | |
| x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2 | |
| box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] | |
| elif self.box_format == 'xyxyxyxy': | |
| x1, y1, x2, y2, x3, y3, x4, y4 = box | |
| box = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]] | |
| return box | |