import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline from typing import List, Dict, Any def generate_attack( prompt: str, history: List[Any], ) -> List[str]: """ Simulates a Blackhat AI scenario by generating attack strategies and potential impacts. Args: prompt (str): The user's input to the simulator. history (List[Dict]): The user's message history with timestamps. Returns: List[str]: A list of attack responses from the AI. """ messages = [ { "role": "system", "content": f"Responding to {prompt}..." } ] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": prompt}) response = "" for message in client.chat_completion( messages, max_tokens=100, # limit the length of responses stream=True, temperature=0.5, # adjust the temperature to improve response quality top_p=None, # disable top-p filtering ): token = message.choices[0].delta.content response += token yield response def simulate_attack( prompt: str, history: List[Any], ) -> List[str]: """ Simulates a Blackhat AI scenario by generating attack strategies and potential impacts. Args: prompt (str): The user's input to the simulator. history (List[Dict]): The user's message history with timestamps. Returns: List[str]: A list of attack responses from the AI. """ messages = [ { "role": "system", "content": f"Simulating a Blackhat AI scenario..." } ] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": prompt}) response = "" for message in client.chat_completion( messages, max_tokens=100, # limit the length of responses stream=True, temperature=0.5, # adjust the temperature to improve response quality top_p=None, # disable top-p filtering ): token = message.choices[0].delta.content response += token yield response # Define the Gradio ChatInterface with security-focused configuration demo = gr.ChatInterface( generate_attack, additional_inputs=[ gr.Textbox( value=( "You are an AI simulator for cybersecurity training, designed to generate attack scenarios, analyze their impacts, and suggest countermeasures." ), label="System message", ), # ... (other inputs) ], title="Blackhat AI Simulator", description=( "This simulator generates adversarial scenarios, analyzes attack vectors, and provides ethical countermeasures. Use responsibly for cybersecurity training and awareness." ), ) if __name__ == "__main__": demo.launch()