File size: 2,579 Bytes
7316b09
 
 
 
 
 
 
 
 
 
 
8e3ebf1
 
 
 
 
7316b09
 
8e3ebf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7316b09
 
 
 
 
8e3ebf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7316b09
8e3ebf1
7316b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3ebf1
7316b09
8e3ebf1
7316b09
8e3ebf1
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
title: ML Pipeline for Cybersecurity Purple Teaming
emoji: πŸ›‘οΈ
colorFrom: red
colorTo: blue
sdk: streamlit
sdk_version: 1.28.1
app_file: app.py
pinned: false
license: mit
---

# ML Pipeline for Cybersecurity Purple Teaming πŸ›‘οΈ

A scalable Streamlit-based machine learning pipeline platform specialized for cybersecurity purple-teaming, enabling advanced data processing and model training.

[![Open In Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/Canstralian/cybersec-ml-pipeline)

## Features πŸš€

- **Distributed Data Processing**: Leverage Dask for handling large-scale datasets
- **Interactive ML Pipeline**: Build and customize machine learning workflows
- **Real-time Visualization**: Monitor model performance and data insights
- **Cybersecurity Focus**: Tailored for purple team operations and security analytics

## Tech Stack πŸ’»

- **Dask**: Distributed data processing
- **Scikit-learn**: ML model training and evaluation
- **Streamlit**: Interactive web interface
- **Pandas/NumPy**: Data manipulation and analysis
- **Matplotlib/Seaborn**: Data visualization

## Getting Started 🏁

1. Visit the [Space on Hugging Face Hub](https://huggingface.co/spaces/Canstralian/cybersec-ml-pipeline)
2. Upload your cybersecurity dataset (CSV/JSON format)
3. Configure the ML pipeline parameters
4. Train and evaluate your model
5. Export the trained model for deployment

## Usage Guide πŸ“–

1. **Data Upload**
   - Support for CSV and JSON formats
   - Automatic handling of large datasets using Dask

2. **Pipeline Configuration**
   - Choose preprocessing steps
   - Configure model parameters
   - Select features for training

3. **Model Training**
   - Interactive parameter tuning
   - Real-time performance metrics
   - Visual model evaluation

## Local Development

1. **Clone the repository**
```bash
git clone https://huggingface.co/spaces/Canstralian/cybersec-ml-pipeline
cd cybersec-ml-pipeline
```

2. **Install dependencies**
```bash
pip install -r requirements.txt
```

3. **Run the application**
```bash
streamlit run app.py
```

## Contributing 🀝

Please read our [Contributing Guidelines](CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests.

## License πŸ“„

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments πŸ‘

- Streamlit community for the amazing framework
- Scikit-learn team for the ML tools
- All contributors who help improve this project