Update app.py
Browse files
app.py
CHANGED
|
@@ -110,10 +110,16 @@ if 'df' in locals():
|
|
| 110 |
df[features], df[target_col], test_size=test_size, random_state=42
|
| 111 |
)
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
st.subheader("Select and Train Model")
|
| 114 |
model_type = st.selectbox("Choose a model:", ["Logistic Regression", "Decision Tree", "Random Forest"])
|
| 115 |
if model_type == "Logistic Regression":
|
| 116 |
-
model = LogisticRegression()
|
| 117 |
elif model_type == "Decision Tree":
|
| 118 |
model = DecisionTreeClassifier()
|
| 119 |
else:
|
|
|
|
| 110 |
df[features], df[target_col], test_size=test_size, random_state=42
|
| 111 |
)
|
| 112 |
|
| 113 |
+
# Encode the target variable (if categorical) using LabelEncoder
|
| 114 |
+
if y_train.dtypes == 'object': # Check if the target column is categorical
|
| 115 |
+
le = LabelEncoder()
|
| 116 |
+
y_train = le.fit_transform(y_train)
|
| 117 |
+
y_test = le.transform(y_test)
|
| 118 |
+
|
| 119 |
st.subheader("Select and Train Model")
|
| 120 |
model_type = st.selectbox("Choose a model:", ["Logistic Regression", "Decision Tree", "Random Forest"])
|
| 121 |
if model_type == "Logistic Regression":
|
| 122 |
+
model = LogisticRegression(max_iter=200) # Increase max_iter if needed
|
| 123 |
elif model_type == "Decision Tree":
|
| 124 |
model = DecisionTreeClassifier()
|
| 125 |
else:
|