Delete hugging_steam-master
Browse files- hugging_steam-master/.devcontainer/devcontainer.json +0 -33
- hugging_steam-master/README.md +0 -24
- hugging_steam-master/app_v1.py +0 -67
- hugging_steam-master/app_v2.py +0 -73
- hugging_steam-master/app_v3.py +0 -69
- hugging_steam-master/img/placeholder.md +0 -1
- hugging_steam-master/img/streamlit.png +0 -0
- hugging_steam-master/langchain_app.py +0 -51
- hugging_steam-master/notebook/hf.env +0 -2
- hugging_steam-master/streamlit.png +0 -0
hugging_steam-master/.devcontainer/devcontainer.json
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "Python 3",
|
3 |
-
// Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
|
4 |
-
"image": "mcr.microsoft.com/devcontainers/python:1-3.11-bullseye",
|
5 |
-
"customizations": {
|
6 |
-
"codespaces": {
|
7 |
-
"openFiles": [
|
8 |
-
"README.md",
|
9 |
-
"streamlit_app.py"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
"vscode": {
|
13 |
-
"settings": {},
|
14 |
-
"extensions": [
|
15 |
-
"ms-python.python",
|
16 |
-
"ms-python.vscode-pylance"
|
17 |
-
]
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"updateContentCommand": "[ -f packages.txt ] && sudo apt update && sudo apt upgrade -y && sudo xargs apt install -y <packages.txt; [ -f requirements.txt ] && pip3 install --user -r requirements.txt; pip3 install --user streamlit; echo '✅ Packages installed and Requirements met'",
|
21 |
-
"postAttachCommand": {
|
22 |
-
"server": "streamlit run streamlit_app.py --server.enableCORS false --server.enableXsrfProtection false"
|
23 |
-
},
|
24 |
-
"portsAttributes": {
|
25 |
-
"8501": {
|
26 |
-
"label": "Application",
|
27 |
-
"onAutoForward": "openPreview"
|
28 |
-
}
|
29 |
-
},
|
30 |
-
"forwardPorts": [
|
31 |
-
8501
|
32 |
-
]
|
33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/README.md
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
# 🤗💬 HugChat App
|
2 |
-
```
|
3 |
-
This app is an LLM-powered chatbot built using Streamlit and HugChat.
|
4 |
-
```
|
5 |
-
|
6 |
-
[HugChat](https://github.com/Soulter/hugging-chat-api) is an unofficial port to the [HuggingFace Chat](https://huggingface.co/chat/) API that is powered by the [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model.
|
7 |
-
|
8 |
-
## Demo App
|
9 |
-
|
10 |
-
[](https://hugchat.streamlit.app/)
|
11 |
-
|
12 |
-
## Disclaimer
|
13 |
-
The following disclaimer is from the GitHub repo from the authors of the [HugChat](https://github.com/Soulter/hugging-chat-api) port.
|
14 |
-
> When you use this project, it means that you have agreed to the following two requirements of the HuggingChat:
|
15 |
-
>
|
16 |
-
> AI is an area of active research with known problems such as biased generation and misinformation. Do not use this application for high-stakes decisions or advice. Your conversations will be shared with model authors.
|
17 |
-
|
18 |
-
|
19 |
-
## Libraries used
|
20 |
-
|
21 |
-
This app is built using the following Python libraries:
|
22 |
-
- [Streamlit](https://streamlit.io/)
|
23 |
-
- [HugChat](https://github.com/Soulter/hugging-chat-api)
|
24 |
-
- [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/app_v1.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_chat import message
|
3 |
-
from streamlit_extras.colored_header import colored_header
|
4 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
5 |
-
from hugchat import hugchat
|
6 |
-
import os
|
7 |
-
|
8 |
-
# Streamlit page config
|
9 |
-
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
|
10 |
-
|
11 |
-
# Sidebar contents
|
12 |
-
with st.sidebar:
|
13 |
-
st.title('🤗💬 HugChat App')
|
14 |
-
st.markdown('''
|
15 |
-
## About
|
16 |
-
This app is an LLM-powered chatbot built using:
|
17 |
-
- [Streamlit](https://streamlit.io/)
|
18 |
-
- [HugChat](https://github.com/Soulter/hugging-chat-api)
|
19 |
-
- [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
|
20 |
-
|
21 |
-
💡 Note: No API key required!
|
22 |
-
''')
|
23 |
-
add_vertical_space(5)
|
24 |
-
st.write('Made with ❤️ by [Data Professor](https://youtube.com/dataprofessor)')
|
25 |
-
|
26 |
-
# Initialize chatbot and session state
|
27 |
-
if 'chatbot' not in st.session_state:
|
28 |
-
# Create ChatBot instance
|
29 |
-
st.session_state.chatbot = hugchat.ChatBot()
|
30 |
-
|
31 |
-
if 'generated' not in st.session_state:
|
32 |
-
st.session_state['generated'] = ["I'm HugChat, How may I help you?"]
|
33 |
-
|
34 |
-
if 'past' not in st.session_state:
|
35 |
-
st.session_state['past'] = ['Hi!']
|
36 |
-
|
37 |
-
# Layout of input/response containers
|
38 |
-
input_container = st.container()
|
39 |
-
colored_header(label='', description='', color_name='blue-30')
|
40 |
-
response_container = st.container()
|
41 |
-
|
42 |
-
# User input
|
43 |
-
def get_text():
|
44 |
-
return st.text_input("You: ", "", key="input")
|
45 |
-
|
46 |
-
with input_container:
|
47 |
-
user_input = get_text()
|
48 |
-
|
49 |
-
# AI Response Generation
|
50 |
-
def generate_response(prompt):
|
51 |
-
try:
|
52 |
-
response = st.session_state.chatbot.chat(prompt)
|
53 |
-
return response
|
54 |
-
except Exception as e:
|
55 |
-
return f"An error occurred: {e}"
|
56 |
-
|
57 |
-
# Display conversation
|
58 |
-
with response_container:
|
59 |
-
if user_input:
|
60 |
-
response = generate_response(user_input)
|
61 |
-
st.session_state.past.append(user_input)
|
62 |
-
st.session_state.generated.append(response)
|
63 |
-
|
64 |
-
if st.session_state['generated']:
|
65 |
-
for i in range(len(st.session_state['generated'])):
|
66 |
-
message(st.session_state['past'][i], is_user=True, key=f"{i}_user")
|
67 |
-
message(st.session_state["generated"][i], key=f"{i}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/app_v2.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_chat import message
|
3 |
-
from streamlit_extras.colored_header import colored_header
|
4 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
5 |
-
from hugchat import hugchat
|
6 |
-
from hugchat.login import Login
|
7 |
-
|
8 |
-
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
|
9 |
-
|
10 |
-
# Sidebar contents
|
11 |
-
with st.sidebar:
|
12 |
-
st.title('🤗💬 HugChat App')
|
13 |
-
|
14 |
-
st.header('Hugging Face Login')
|
15 |
-
hf_email = st.text_input('Enter E-mail:', type='password')
|
16 |
-
hf_pass = st.text_input('Enter password:', type='password')
|
17 |
-
|
18 |
-
st.markdown('''
|
19 |
-
## About
|
20 |
-
This app is an LLM-powered chatbot built using:
|
21 |
-
- [Streamlit](https://streamlit.io/)
|
22 |
-
- [HugChat](https://github.com/Soulter/hugging-chat-api)
|
23 |
-
- [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
|
24 |
-
|
25 |
-
''')
|
26 |
-
add_vertical_space(5)
|
27 |
-
st.write('Made with ❤️ by [Data Professor](https://youtube.com/dataprofessor)')
|
28 |
-
|
29 |
-
# Generate empty lists for generated and past.
|
30 |
-
## generated stores AI generated responses
|
31 |
-
if 'generated' not in st.session_state:
|
32 |
-
st.session_state['generated'] = ["I'm HugChat, How may I help you?"]
|
33 |
-
## past stores User's questions
|
34 |
-
if 'past' not in st.session_state:
|
35 |
-
st.session_state['past'] = ['Hi!']
|
36 |
-
|
37 |
-
# Layout of input/response containers
|
38 |
-
input_container = st.container()
|
39 |
-
colored_header(label='', description='', color_name='blue-30')
|
40 |
-
response_container = st.container()
|
41 |
-
|
42 |
-
# User input
|
43 |
-
## Function for taking user provided prompt as input
|
44 |
-
def get_text():
|
45 |
-
input_text = st.text_input("You: ", "", key="input")
|
46 |
-
return input_text
|
47 |
-
## Applying the user input box
|
48 |
-
with input_container:
|
49 |
-
user_input = get_text()
|
50 |
-
|
51 |
-
# Response output
|
52 |
-
## Function for taking user prompt as input followed by producing AI generated responses
|
53 |
-
def generate_response(prompt, email, passwd):
|
54 |
-
# Hugging Face Login
|
55 |
-
sign = Login(email, passwd)
|
56 |
-
cookies = sign.login()
|
57 |
-
sign.saveCookies()
|
58 |
-
# Create ChatBot
|
59 |
-
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
60 |
-
response = chatbot.chat(prompt)
|
61 |
-
return response
|
62 |
-
|
63 |
-
## Conditional display of AI generated responses as a function of user provided prompts
|
64 |
-
with response_container:
|
65 |
-
if user_input and hf_email and hf_pass:
|
66 |
-
response = generate_response(user_input, hf_email, hf_pass)
|
67 |
-
st.session_state.past.append(user_input)
|
68 |
-
st.session_state.generated.append(response)
|
69 |
-
|
70 |
-
if st.session_state['generated']:
|
71 |
-
for i in range(len(st.session_state['generated'])):
|
72 |
-
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
|
73 |
-
message(st.session_state["generated"][i], key=str(i))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/app_v3.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from hugchat import hugchat
|
3 |
-
from hugchat.login import Login
|
4 |
-
import os
|
5 |
-
|
6 |
-
# App title
|
7 |
-
st.set_page_config(page_title="🤗💬 HugChat")
|
8 |
-
|
9 |
-
# Hugging Face Credentials
|
10 |
-
with st.sidebar:
|
11 |
-
st.title('🤗💬 HugChat')
|
12 |
-
if ('EMAIL' in st.secrets) and ('PASS' in st.secrets):
|
13 |
-
st.success('HuggingFace Login credentials already provided!', icon='✅')
|
14 |
-
hf_email = st.secrets['EMAIL']
|
15 |
-
hf_pass = st.secrets['PASS']
|
16 |
-
else:
|
17 |
-
hf_email = st.text_input('Enter E-mail:', type='password')
|
18 |
-
hf_pass = st.text_input('Enter password:', type='password')
|
19 |
-
if not (hf_email and hf_pass):
|
20 |
-
st.warning('Please enter your credentials!', icon='⚠️')
|
21 |
-
else:
|
22 |
-
st.success('Proceed to entering your prompt message!', icon='👉')
|
23 |
-
st.markdown('📖 Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-an-llm-powered-chatbot-with-streamlit/)!')
|
24 |
-
|
25 |
-
# Store LLM generated responses
|
26 |
-
if "messages" not in st.session_state:
|
27 |
-
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
|
28 |
-
|
29 |
-
# Display or clear chat messages
|
30 |
-
for message in st.session_state.messages:
|
31 |
-
with st.chat_message(message["role"]):
|
32 |
-
st.write(message["content"])
|
33 |
-
|
34 |
-
def clear_chat_history():
|
35 |
-
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
|
36 |
-
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
|
37 |
-
|
38 |
-
# Function for generating LLM response
|
39 |
-
def generate_response(prompt_input, email, passwd):
|
40 |
-
# Hugging Face Login
|
41 |
-
sign = Login(email, passwd)
|
42 |
-
cookies = sign.login()
|
43 |
-
# Create ChatBot
|
44 |
-
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
45 |
-
|
46 |
-
for dict_message in st.session_state.messages:
|
47 |
-
string_dialogue = "You are a helpful assistant."
|
48 |
-
if dict_message["role"] == "user":
|
49 |
-
string_dialogue += "User: " + dict_message["content"] + "\n\n"
|
50 |
-
else:
|
51 |
-
string_dialogue += "Assistant: " + dict_message["content"] + "\n\n"
|
52 |
-
|
53 |
-
prompt = f"{string_dialogue} {prompt_input} Assistant: "
|
54 |
-
return chatbot.chat(prompt)
|
55 |
-
|
56 |
-
# User-provided prompt
|
57 |
-
if prompt := st.chat_input(disabled=not (hf_email and hf_pass)):
|
58 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
59 |
-
with st.chat_message("user"):
|
60 |
-
st.write(prompt)
|
61 |
-
|
62 |
-
# Generate a new response if last message is not from assistant
|
63 |
-
if st.session_state.messages[-1]["role"] != "assistant":
|
64 |
-
with st.chat_message("assistant"):
|
65 |
-
with st.spinner("Thinking..."):
|
66 |
-
response = generate_response(prompt, hf_email, hf_pass)
|
67 |
-
st.write(response)
|
68 |
-
message = {"role": "assistant", "content": response}
|
69 |
-
st.session_state.messages.append(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/img/placeholder.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
hugging_steam-master/img/streamlit.png
DELETED
Binary file (4.01 kB)
|
|
hugging_steam-master/langchain_app.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain.chains import ConversationChain
|
3 |
-
from hugchat import hugchat
|
4 |
-
from hugchat.login import Login
|
5 |
-
|
6 |
-
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
|
7 |
-
st.title('🤗💬 HugChat App')
|
8 |
-
|
9 |
-
# Hugging Face Credentials
|
10 |
-
with st.sidebar:
|
11 |
-
st.header('Hugging Face Login')
|
12 |
-
hf_email = st.text_input('Enter E-mail:', type='password')
|
13 |
-
hf_pass = st.text_input('Enter password:', type='password')
|
14 |
-
|
15 |
-
# Store AI generated responses
|
16 |
-
if "messages" not in st.session_state.keys():
|
17 |
-
st.session_state.messages = [{"role": "assistant", "content": "I'm HugChat, How may I help you?"}]
|
18 |
-
|
19 |
-
# Display existing chat messages
|
20 |
-
for message in st.session_state.messages:
|
21 |
-
with st.chat_message(message["role"]):
|
22 |
-
st.write(message["content"])
|
23 |
-
|
24 |
-
# Function for generating LLM response
|
25 |
-
def generate_response(prompt, email, passwd):
|
26 |
-
# Hugging Face Login
|
27 |
-
sign = Login(email, passwd)
|
28 |
-
cookies = sign.login()
|
29 |
-
sign.saveCookies()
|
30 |
-
# Create ChatBot
|
31 |
-
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
32 |
-
chain = ConversationChain(llm=chatbot)
|
33 |
-
response = chain.run(input=prompt)
|
34 |
-
return response
|
35 |
-
|
36 |
-
# Prompt for user input and save
|
37 |
-
if prompt := st.chat_input():
|
38 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
39 |
-
with st.chat_message("user"):
|
40 |
-
st.write(prompt)
|
41 |
-
|
42 |
-
# If last message is not from assistant, we need to generate a new response
|
43 |
-
if st.session_state.messages[-1]["role"] != "assistant":
|
44 |
-
# Call LLM
|
45 |
-
with st.chat_message("assistant"):
|
46 |
-
with st.spinner("Thinking..."):
|
47 |
-
response = generate_response(prompt, hf_email, hf_pass)
|
48 |
-
st.write(response)
|
49 |
-
|
50 |
-
message = {"role": "assistant", "content": response}
|
51 |
-
st.session_state.messages.append(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hugging_steam-master/notebook/hf.env
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
EMAIL='[email protected]'
|
2 |
-
PASS='xxxxxxxxxxx'
|
|
|
|
|
|
hugging_steam-master/streamlit.png
DELETED
Binary file (4.01 kB)
|
|