#give yourself more patiences 1. explore metadata, check each keys 2. define retriever supabase? relational database?, embeddings, content, id, ... create a project, and a table + columns first emm... https://supabase.com/dashboard/project/ohzwldyjckkuzbybaixs/editor/17248 enable vector in extensions under database create table public.documents ( id bigint generated by default as identity primary key, content text, metadata json, embedding vector(768), similarity float ); create index for embedding!!! add functions, advanced settings, sql language create index on documents using hnsw (embedding vector_ip_ops); alter table documents enable row level security; create function match_documents_langchain ( query_embedding vector (768) ) returns setof documents language plpgsql as $$ begin return query select * from documents order by documents.embedding <#> query_embedding limit 1; end; $$; 3. define agent 4. define gradio