Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- app.py +5 -136
- labels.txt +18 -150
- person-1.jpg +0 -0
- person-2.jpg +0 -0
- person-3.jpg +0 -0
- person-4.jpg +0 -0
- person-5.jpg +0 -0
app.py
CHANGED
|
@@ -8,17 +8,17 @@ import tensorflow as tf
|
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
| 10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
-
"
|
| 12 |
)
|
| 13 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
| 14 |
-
"
|
| 15 |
)
|
| 16 |
|
| 17 |
def ade_palette():
|
| 18 |
"""ADE20K palette that maps each class to RGB values."""
|
| 19 |
return [
|
| 20 |
-
[
|
| 21 |
-
[
|
| 22 |
[45, 189, 106],
|
| 23 |
[234, 123, 67],
|
| 24 |
[78, 56, 123],
|
|
@@ -36,137 +36,6 @@ def ade_palette():
|
|
| 36 |
[120, 56, 123],
|
| 37 |
[45, 78, 123],
|
| 38 |
[156, 200, 56],
|
| 39 |
-
[32, 90, 210],
|
| 40 |
-
[56, 123, 67],
|
| 41 |
-
[180, 56, 123],
|
| 42 |
-
[123, 67, 45],
|
| 43 |
-
[45, 134, 200],
|
| 44 |
-
[67, 56, 123],
|
| 45 |
-
[78, 123, 67],
|
| 46 |
-
[32, 210, 90],
|
| 47 |
-
[45, 56, 189],
|
| 48 |
-
[123, 56, 123],
|
| 49 |
-
[56, 156, 200],
|
| 50 |
-
[189, 56, 45],
|
| 51 |
-
[112, 200, 56],
|
| 52 |
-
[56, 123, 45],
|
| 53 |
-
[200, 32, 90],
|
| 54 |
-
[123, 45, 78],
|
| 55 |
-
[200, 156, 56],
|
| 56 |
-
[45, 67, 123],
|
| 57 |
-
[56, 45, 78],
|
| 58 |
-
[45, 56, 123],
|
| 59 |
-
[123, 67, 56],
|
| 60 |
-
[56, 78, 123],
|
| 61 |
-
[210, 90, 32],
|
| 62 |
-
[123, 56, 189],
|
| 63 |
-
[45, 200, 134],
|
| 64 |
-
[67, 123, 56],
|
| 65 |
-
[123, 45, 67],
|
| 66 |
-
[90, 32, 210],
|
| 67 |
-
[200, 45, 78],
|
| 68 |
-
[32, 210, 90],
|
| 69 |
-
[45, 123, 67],
|
| 70 |
-
[165, 42, 87],
|
| 71 |
-
[72, 145, 167],
|
| 72 |
-
[15, 158, 75],
|
| 73 |
-
[209, 89, 40],
|
| 74 |
-
[32, 21, 121],
|
| 75 |
-
[184, 20, 100],
|
| 76 |
-
[56, 135, 15],
|
| 77 |
-
[128, 92, 176],
|
| 78 |
-
[1, 119, 140],
|
| 79 |
-
[220, 151, 43],
|
| 80 |
-
[41, 97, 72],
|
| 81 |
-
[148, 38, 27],
|
| 82 |
-
[107, 86, 176],
|
| 83 |
-
[21, 26, 136],
|
| 84 |
-
[174, 27, 90],
|
| 85 |
-
[91, 96, 204],
|
| 86 |
-
[108, 50, 107],
|
| 87 |
-
[27, 45, 136],
|
| 88 |
-
[168, 200, 52],
|
| 89 |
-
[7, 102, 27],
|
| 90 |
-
[42, 93, 56],
|
| 91 |
-
[140, 52, 112],
|
| 92 |
-
[92, 107, 168],
|
| 93 |
-
[17, 118, 176],
|
| 94 |
-
[59, 50, 174],
|
| 95 |
-
[206, 40, 143],
|
| 96 |
-
[44, 19, 142],
|
| 97 |
-
[23, 168, 75],
|
| 98 |
-
[54, 57, 189],
|
| 99 |
-
[144, 21, 15],
|
| 100 |
-
[15, 176, 35],
|
| 101 |
-
[107, 19, 79],
|
| 102 |
-
[204, 52, 114],
|
| 103 |
-
[48, 173, 83],
|
| 104 |
-
[11, 120, 53],
|
| 105 |
-
[206, 104, 28],
|
| 106 |
-
[20, 31, 153],
|
| 107 |
-
[27, 21, 93],
|
| 108 |
-
[11, 206, 138],
|
| 109 |
-
[112, 30, 83],
|
| 110 |
-
[68, 91, 152],
|
| 111 |
-
[153, 13, 43],
|
| 112 |
-
[25, 114, 54],
|
| 113 |
-
[92, 27, 150],
|
| 114 |
-
[108, 42, 59],
|
| 115 |
-
[194, 77, 5],
|
| 116 |
-
[145, 48, 83],
|
| 117 |
-
[7, 113, 19],
|
| 118 |
-
[25, 92, 113],
|
| 119 |
-
[60, 168, 79],
|
| 120 |
-
[78, 33, 120],
|
| 121 |
-
[89, 176, 205],
|
| 122 |
-
[27, 200, 94],
|
| 123 |
-
[210, 67, 23],
|
| 124 |
-
[123, 89, 189],
|
| 125 |
-
[225, 56, 112],
|
| 126 |
-
[75, 156, 45],
|
| 127 |
-
[172, 104, 200],
|
| 128 |
-
[15, 170, 197],
|
| 129 |
-
[240, 133, 65],
|
| 130 |
-
[89, 156, 112],
|
| 131 |
-
[214, 88, 57],
|
| 132 |
-
[156, 134, 200],
|
| 133 |
-
[78, 57, 189],
|
| 134 |
-
[200, 78, 123],
|
| 135 |
-
[106, 120, 210],
|
| 136 |
-
[145, 56, 112],
|
| 137 |
-
[89, 120, 189],
|
| 138 |
-
[185, 206, 56],
|
| 139 |
-
[47, 99, 28],
|
| 140 |
-
[112, 189, 78],
|
| 141 |
-
[200, 112, 89],
|
| 142 |
-
[89, 145, 112],
|
| 143 |
-
[78, 106, 189],
|
| 144 |
-
[112, 78, 189],
|
| 145 |
-
[156, 112, 78],
|
| 146 |
-
[28, 210, 99],
|
| 147 |
-
[78, 89, 189],
|
| 148 |
-
[189, 78, 57],
|
| 149 |
-
[112, 200, 78],
|
| 150 |
-
[189, 47, 78],
|
| 151 |
-
[205, 112, 57],
|
| 152 |
-
[78, 145, 57],
|
| 153 |
-
[200, 78, 112],
|
| 154 |
-
[99, 89, 145],
|
| 155 |
-
[200, 156, 78],
|
| 156 |
-
[57, 78, 145],
|
| 157 |
-
[78, 57, 99],
|
| 158 |
-
[57, 78, 145],
|
| 159 |
-
[145, 112, 78],
|
| 160 |
-
[78, 89, 145],
|
| 161 |
-
[210, 99, 28],
|
| 162 |
-
[145, 78, 189],
|
| 163 |
-
[57, 200, 136],
|
| 164 |
-
[89, 156, 78],
|
| 165 |
-
[145, 78, 99],
|
| 166 |
-
[99, 28, 210],
|
| 167 |
-
[189, 78, 47],
|
| 168 |
-
[28, 210, 99],
|
| 169 |
-
[78, 145, 57],
|
| 170 |
]
|
| 171 |
|
| 172 |
labels_list = []
|
|
@@ -235,7 +104,7 @@ def sepia(input_img):
|
|
| 235 |
demo = gr.Interface(fn=sepia,
|
| 236 |
inputs=gr.Image(shape=(400, 600)),
|
| 237 |
outputs=['plot'],
|
| 238 |
-
examples=["
|
| 239 |
allow_flagging='never')
|
| 240 |
|
| 241 |
|
|
|
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
| 10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
+
"mattmdjaga/segformer_b2_clothes"
|
| 12 |
)
|
| 13 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
| 14 |
+
"mattmdjaga/segformer_b2_clothes"
|
| 15 |
)
|
| 16 |
|
| 17 |
def ade_palette():
|
| 18 |
"""ADE20K palette that maps each class to RGB values."""
|
| 19 |
return [
|
| 20 |
+
[255, 0, 0],
|
| 21 |
+
[255, 255, 0],
|
| 22 |
[45, 189, 106],
|
| 23 |
[234, 123, 67],
|
| 24 |
[78, 56, 123],
|
|
|
|
| 36 |
[120, 56, 123],
|
| 37 |
[45, 78, 123],
|
| 38 |
[156, 200, 56],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
]
|
| 40 |
|
| 41 |
labels_list = []
|
|
|
|
| 104 |
demo = gr.Interface(fn=sepia,
|
| 105 |
inputs=gr.Image(shape=(400, 600)),
|
| 106 |
outputs=['plot'],
|
| 107 |
+
examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg","person-5.jpg"],
|
| 108 |
allow_flagging='never')
|
| 109 |
|
| 110 |
|
labels.txt
CHANGED
|
@@ -1,150 +1,18 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
curtain
|
| 20 |
-
chair
|
| 21 |
-
car
|
| 22 |
-
water
|
| 23 |
-
painting
|
| 24 |
-
sofa
|
| 25 |
-
shelf
|
| 26 |
-
house
|
| 27 |
-
sea
|
| 28 |
-
mirror
|
| 29 |
-
rug
|
| 30 |
-
field
|
| 31 |
-
armchair
|
| 32 |
-
seat
|
| 33 |
-
fence
|
| 34 |
-
desk
|
| 35 |
-
rock
|
| 36 |
-
wardrobe
|
| 37 |
-
lamp
|
| 38 |
-
bathtub
|
| 39 |
-
railing
|
| 40 |
-
cushion
|
| 41 |
-
base
|
| 42 |
-
box
|
| 43 |
-
column
|
| 44 |
-
signboard
|
| 45 |
-
chest of drawers
|
| 46 |
-
counter
|
| 47 |
-
sand
|
| 48 |
-
sink
|
| 49 |
-
skyscraper
|
| 50 |
-
fireplace
|
| 51 |
-
refrigerator
|
| 52 |
-
grandstand
|
| 53 |
-
path
|
| 54 |
-
stairs
|
| 55 |
-
runway
|
| 56 |
-
case
|
| 57 |
-
pool table
|
| 58 |
-
pillow
|
| 59 |
-
screen door
|
| 60 |
-
stairway
|
| 61 |
-
river
|
| 62 |
-
bridge
|
| 63 |
-
bookcase
|
| 64 |
-
blind
|
| 65 |
-
coffee table
|
| 66 |
-
toilet
|
| 67 |
-
flower
|
| 68 |
-
book
|
| 69 |
-
hill
|
| 70 |
-
bench
|
| 71 |
-
countertop
|
| 72 |
-
stove
|
| 73 |
-
palm
|
| 74 |
-
kitchen island
|
| 75 |
-
computer
|
| 76 |
-
swivel chair
|
| 77 |
-
boat
|
| 78 |
-
bar
|
| 79 |
-
arcade machine
|
| 80 |
-
hovel
|
| 81 |
-
bus
|
| 82 |
-
towel
|
| 83 |
-
light
|
| 84 |
-
truck
|
| 85 |
-
tower
|
| 86 |
-
chandelier
|
| 87 |
-
awning
|
| 88 |
-
streetlight
|
| 89 |
-
booth
|
| 90 |
-
television receiver
|
| 91 |
-
airplane
|
| 92 |
-
dirt track
|
| 93 |
-
apparel
|
| 94 |
-
pole
|
| 95 |
-
land
|
| 96 |
-
bannister
|
| 97 |
-
escalator
|
| 98 |
-
ottoman
|
| 99 |
-
bottle
|
| 100 |
-
buffet
|
| 101 |
-
poster
|
| 102 |
-
stage
|
| 103 |
-
van
|
| 104 |
-
ship
|
| 105 |
-
fountain
|
| 106 |
-
conveyer belt
|
| 107 |
-
canopy
|
| 108 |
-
washer
|
| 109 |
-
plaything
|
| 110 |
-
swimming pool
|
| 111 |
-
stool
|
| 112 |
-
barrel
|
| 113 |
-
basket
|
| 114 |
-
waterfall
|
| 115 |
-
tent
|
| 116 |
-
bag
|
| 117 |
-
minibike
|
| 118 |
-
cradle
|
| 119 |
-
oven
|
| 120 |
-
ball
|
| 121 |
-
food
|
| 122 |
-
step
|
| 123 |
-
tank
|
| 124 |
-
trade name
|
| 125 |
-
microwave
|
| 126 |
-
pot
|
| 127 |
-
animal
|
| 128 |
-
bicycle
|
| 129 |
-
lake
|
| 130 |
-
dishwasher
|
| 131 |
-
screen
|
| 132 |
-
blanket
|
| 133 |
-
sculpture
|
| 134 |
-
hood
|
| 135 |
-
sconce
|
| 136 |
-
vase
|
| 137 |
-
traffic light
|
| 138 |
-
tray
|
| 139 |
-
ashcan
|
| 140 |
-
fan
|
| 141 |
-
pier
|
| 142 |
-
crt screen
|
| 143 |
-
plate
|
| 144 |
-
monitor
|
| 145 |
-
bulletin board
|
| 146 |
-
shower
|
| 147 |
-
radiator
|
| 148 |
-
glass
|
| 149 |
-
clock
|
| 150 |
-
flag
|
|
|
|
| 1 |
+
Background
|
| 2 |
+
Hat
|
| 3 |
+
Hair
|
| 4 |
+
Sunglasses
|
| 5 |
+
Upper-clothes
|
| 6 |
+
Skirt
|
| 7 |
+
Pants
|
| 8 |
+
Dress
|
| 9 |
+
Belt
|
| 10 |
+
Left-shoe
|
| 11 |
+
Right-shoe
|
| 12 |
+
Face
|
| 13 |
+
Left-leg
|
| 14 |
+
Right-leg
|
| 15 |
+
Left-arm
|
| 16 |
+
Right-arm
|
| 17 |
+
Bag
|
| 18 |
+
Scarf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
person-1.jpg
ADDED
|
person-2.jpg
ADDED
|
person-3.jpg
ADDED
|
person-4.jpg
ADDED
|
person-5.jpg
ADDED
|