Spaces:
Running
Running
yinuozhang
commited on
Commit
•
45d6af3
1
Parent(s):
c5d7b26
software
Browse files- app.py +279 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
import pandas as pd
|
4 |
+
from io import StringIO
|
5 |
+
|
6 |
+
def remove_nested_branches(smiles):
|
7 |
+
"""Remove nested branches from SMILES string"""
|
8 |
+
result = ''
|
9 |
+
depth = 0
|
10 |
+
for char in smiles:
|
11 |
+
if char == '(':
|
12 |
+
depth += 1
|
13 |
+
elif char == ')':
|
14 |
+
depth -= 1
|
15 |
+
elif depth == 0:
|
16 |
+
result += char
|
17 |
+
return result
|
18 |
+
def identify_linkage_type(segment):
|
19 |
+
"""
|
20 |
+
Identify the type of linkage between residues
|
21 |
+
Returns: tuple (type, is_n_methylated)
|
22 |
+
"""
|
23 |
+
if 'OC(=O)' in segment:
|
24 |
+
return ('ester', False)
|
25 |
+
elif 'N(C)C(=O)' in segment:
|
26 |
+
return ('peptide', True) # N-methylated peptide bond
|
27 |
+
elif 'NC(=O)' in segment:
|
28 |
+
return ('peptide', False) # Regular peptide bond
|
29 |
+
return (None, False)
|
30 |
+
def identify_residue(segment, next_segment=None, prev_segment=None):
|
31 |
+
"""
|
32 |
+
Identify amino acid residues with modifications and special handling for Proline
|
33 |
+
Returns: tuple (residue, modifications)
|
34 |
+
"""
|
35 |
+
modifications = []
|
36 |
+
|
37 |
+
# Check for modifications in the next segment
|
38 |
+
if next_segment:
|
39 |
+
if 'N(C)C(=O)' in next_segment:
|
40 |
+
modifications.append('N-Me')
|
41 |
+
if 'OC(=O)' in next_segment:
|
42 |
+
modifications.append('O-linked')
|
43 |
+
|
44 |
+
# Special case for Proline - check for CCCN pattern and its cyclization
|
45 |
+
# Proline can appear in several patterns due to its cyclic nature
|
46 |
+
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
|
47 |
+
return ('Pro', modifications)
|
48 |
+
|
49 |
+
# Check if this segment is part of a Proline ring by looking at context
|
50 |
+
if prev_segment and next_segment:
|
51 |
+
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
|
52 |
+
combined = prev_segment + segment + next_segment
|
53 |
+
if re.search(r'CCCN.*C\(=O\)', combined):
|
54 |
+
return ('Pro', modifications)
|
55 |
+
|
56 |
+
# Aromatic amino acids
|
57 |
+
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:
|
58 |
+
return ('Phe', modifications)
|
59 |
+
if 'c2ccc(O)cc2' in segment:
|
60 |
+
return ('Tyr', modifications)
|
61 |
+
if 'c1c[nH]c2ccccc12' in segment:
|
62 |
+
return ('Trp', modifications)
|
63 |
+
if 'c1cnc[nH]1' in segment:
|
64 |
+
return ('His', modifications)
|
65 |
+
|
66 |
+
# Branched chain amino acids
|
67 |
+
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:
|
68 |
+
return ('Leu', modifications)
|
69 |
+
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:
|
70 |
+
return ('Leu', modifications)
|
71 |
+
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
|
72 |
+
return ('Val', modifications)
|
73 |
+
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:
|
74 |
+
return ('Ile', modifications)
|
75 |
+
|
76 |
+
# Small/polar amino acids
|
77 |
+
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
|
78 |
+
return ('Ala', modifications)
|
79 |
+
if '[C@H](CO)' in segment:
|
80 |
+
return ('Ser', modifications)
|
81 |
+
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
|
82 |
+
return ('Thr', modifications)
|
83 |
+
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
|
84 |
+
return ('Gly', modifications)
|
85 |
+
|
86 |
+
# Rest of amino acids remain the same...
|
87 |
+
# [Previous code for other amino acids]
|
88 |
+
|
89 |
+
return (None, modifications)
|
90 |
+
def parse_peptide(smiles):
|
91 |
+
"""
|
92 |
+
Parse peptide sequence with enhanced Proline recognition
|
93 |
+
"""
|
94 |
+
# Split on peptide bonds while preserving cycle numbers
|
95 |
+
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
|
96 |
+
segments = re.split(bond_pattern, smiles)
|
97 |
+
segments = [s for s in segments if s]
|
98 |
+
|
99 |
+
sequence = []
|
100 |
+
i = 0
|
101 |
+
while i < len(segments):
|
102 |
+
segment = segments[i]
|
103 |
+
next_segment = segments[i+1] if i+1 < len(segments) else None
|
104 |
+
prev_segment = segments[i-1] if i > 0 else None
|
105 |
+
|
106 |
+
# Skip pure bond patterns
|
107 |
+
if re.match(r'.*C\(=O\)$', segment):
|
108 |
+
i += 1
|
109 |
+
continue
|
110 |
+
|
111 |
+
residue, modifications = identify_residue(segment, next_segment, prev_segment)
|
112 |
+
if residue:
|
113 |
+
# Format residue with modifications
|
114 |
+
formatted_residue = residue
|
115 |
+
if modifications:
|
116 |
+
formatted_residue += f"({','.join(modifications)})"
|
117 |
+
sequence.append(formatted_residue)
|
118 |
+
|
119 |
+
i += 1
|
120 |
+
|
121 |
+
is_cyclic = is_cyclic_peptide(smiles)
|
122 |
+
|
123 |
+
# Print debug information
|
124 |
+
print("\nDetailed Analysis:")
|
125 |
+
print("Segments:", segments)
|
126 |
+
print("Found sequence:", sequence)
|
127 |
+
|
128 |
+
# Format the final sequence
|
129 |
+
if is_cyclic:
|
130 |
+
return f"cyclo({'-'.join(sequence)})"
|
131 |
+
return '-'.join(sequence)
|
132 |
+
|
133 |
+
def is_cyclic_peptide(smiles):
|
134 |
+
"""
|
135 |
+
Determine if SMILES represents a cyclic peptide by checking:
|
136 |
+
1. Proper cycle number pairing
|
137 |
+
2. Presence of peptide bonds between cycle points
|
138 |
+
3. Distinguishing between aromatic rings and peptide cycles
|
139 |
+
"""
|
140 |
+
cycle_info = {}
|
141 |
+
|
142 |
+
# Find all cycle numbers and their contexts
|
143 |
+
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
|
144 |
+
number = match.group(2)
|
145 |
+
pre_context = match.group(1) or ''
|
146 |
+
post_context = match.group(3) or ''
|
147 |
+
position = match.start(2)
|
148 |
+
|
149 |
+
if number not in cycle_info:
|
150 |
+
cycle_info[number] = []
|
151 |
+
cycle_info[number].append({
|
152 |
+
'position': position,
|
153 |
+
'pre_context': pre_context,
|
154 |
+
'post_context': post_context,
|
155 |
+
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
|
156 |
+
})
|
157 |
+
|
158 |
+
# Check each cycle
|
159 |
+
peptide_cycles = []
|
160 |
+
aromatic_cycles = []
|
161 |
+
|
162 |
+
for number, occurrences in cycle_info.items():
|
163 |
+
if len(occurrences) != 2: # Must have exactly 2 occurrences
|
164 |
+
continue
|
165 |
+
|
166 |
+
start, end = occurrences[0]['position'], occurrences[1]['position']
|
167 |
+
|
168 |
+
# Get the segment between cycle points
|
169 |
+
segment = smiles[start:end+1]
|
170 |
+
clean_segment = remove_nested_branches(segment)
|
171 |
+
|
172 |
+
# Check if this is an aromatic ring
|
173 |
+
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
|
174 |
+
|
175 |
+
# Check if this is a peptide cycle
|
176 |
+
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
|
177 |
+
|
178 |
+
if is_aromatic:
|
179 |
+
aromatic_cycles.append(number)
|
180 |
+
elif has_peptide_bond:
|
181 |
+
peptide_cycles.append(number)
|
182 |
+
|
183 |
+
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles
|
184 |
+
|
185 |
+
def analyze_single_smiles(smiles):
|
186 |
+
"""Analyze a single SMILES string"""
|
187 |
+
try:
|
188 |
+
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
|
189 |
+
sequence = parse_peptide(smiles)
|
190 |
+
|
191 |
+
details = {
|
192 |
+
'SMILES': smiles,
|
193 |
+
'Sequence': sequence,
|
194 |
+
'Is Cyclic': 'Yes' if is_cyclic else 'No',
|
195 |
+
'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
|
196 |
+
'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
|
197 |
+
}
|
198 |
+
return details
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
return {
|
202 |
+
'SMILES': smiles,
|
203 |
+
'Sequence': f'Error: {str(e)}',
|
204 |
+
'Is Cyclic': 'Error',
|
205 |
+
'Peptide Cycles': 'Error',
|
206 |
+
'Aromatic Cycles': 'Error'
|
207 |
+
}
|
208 |
+
|
209 |
+
def process_input(smiles_input=None, file_obj=None):
|
210 |
+
"""Process either direct SMILES input or file input"""
|
211 |
+
results = []
|
212 |
+
|
213 |
+
# Handle direct SMILES input
|
214 |
+
if smiles_input:
|
215 |
+
result = analyze_single_smiles(smiles_input.strip())
|
216 |
+
results.append(result)
|
217 |
+
|
218 |
+
# Handle file input
|
219 |
+
if file_obj is not None:
|
220 |
+
content = file_obj.decode('utf-8')
|
221 |
+
for line in StringIO(content):
|
222 |
+
smiles = line.strip()
|
223 |
+
if smiles: # Skip empty lines
|
224 |
+
result = analyze_single_smiles(smiles)
|
225 |
+
results.append(result)
|
226 |
+
|
227 |
+
# Create formatted output
|
228 |
+
output_text = ""
|
229 |
+
for i, result in enumerate(results, 1):
|
230 |
+
output_text += f"Entry {i}:\n"
|
231 |
+
output_text += f"SMILES: {result['SMILES']}\n"
|
232 |
+
output_text += f"Sequence: {result['Sequence']}\n"
|
233 |
+
output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
|
234 |
+
output_text += f"Peptide Cycles: {result['Peptide Cycles']}\n"
|
235 |
+
output_text += f"Aromatic Cycles: {result['Aromatic Cycles']}\n"
|
236 |
+
output_text += "-" * 50 + "\n"
|
237 |
+
|
238 |
+
return output_text
|
239 |
+
|
240 |
+
# Create Gradio interface
|
241 |
+
iface = gr.Interface(
|
242 |
+
fn=process_input,
|
243 |
+
inputs=[
|
244 |
+
gr.Textbox(
|
245 |
+
label="Enter SMILES string",
|
246 |
+
placeholder="Enter SMILES notation of peptide...",
|
247 |
+
lines=2
|
248 |
+
),
|
249 |
+
gr.File(
|
250 |
+
label="Or upload a text file with SMILES",
|
251 |
+
file_types=[".txt"],
|
252 |
+
type="binary"
|
253 |
+
)
|
254 |
+
],
|
255 |
+
outputs=gr.Textbox(
|
256 |
+
label="Analysis Results",
|
257 |
+
lines=10
|
258 |
+
),
|
259 |
+
title="Peptide Structure Analyzer",
|
260 |
+
description="""
|
261 |
+
Analyze peptide structures from SMILES notation to:
|
262 |
+
1. Determine if the peptide is cyclic
|
263 |
+
2. Identify peptide cycles vs aromatic rings
|
264 |
+
3. Parse the amino acid sequence
|
265 |
+
|
266 |
+
Input: Either enter a SMILES string directly or upload a text file with multiple SMILES (one per line)
|
267 |
+
""",
|
268 |
+
examples=[
|
269 |
+
# Example cyclic peptide with Proline
|
270 |
+
["CC(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O", None],
|
271 |
+
# Example cyclic peptide with ester bond
|
272 |
+
["CC(C)C[C@@H]1OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)OC(=O)[C@H](C)N(C)C(=O)[C@@H](C)NC(=O)[C@@H](Cc2ccccc2)N(C)C1=O", None]
|
273 |
+
],
|
274 |
+
allow_flagging="never"
|
275 |
+
)
|
276 |
+
|
277 |
+
# Launch the app
|
278 |
+
if __name__ == "__main__":
|
279 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio==4.19.2
|
2 |
+
pandas==2.2.0
|